Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Future Child Resident Scenario - RME puttiwest Prperties, Wells G&H Superfund Site, Operable Unit 2 perjona Auto Parts # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: ### INCREMENTAL RISK CALCULATIONS: Hazard Incremental | | | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor exposure groundwater conc., noncarcinogen (µg/L) | Risk-based indoor exposure groundwater cond., {µg/L} | Pure component water solubility, S (µg/L) | Final indoor exposure groundwater conc., (µg/L) | |---------|---|---|---|--|---|---| | | | | | | | N/A | | | 1,1,1-Trichloroethane | NA NA | NA | NA | 1.33E+06
1.70E+05 | N/A
N/A | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA | NA | NA | | N/A | | 79005 | 1,1,2-Trichloroethane | NA NA | NA NA | NA | 4.42E+06
5.06E+06 | N/A | | 75343 | 1,1-Dichloroethane | NA . | NA NA | NA . | 2.25E+06 | N/A | | 75354 | 1,1-Dichloroethylene | NA NA | NA | NA NA | 3.00E+05 | N/A | | 120821 | 1,2,4-Trichlorobenzene | NA | NA. | NA. | | N/A | | 95501 | 1,2-Dichlorobenzene | NA NA | NA | NA NA | 2.77E+07
6.88E+04 | N/A | | 541731 | Dichlorobenzene, 1,3- | NA | NA | NA | | N/A | | 106467 | 1,4-Dichlorobenzene | NA NA | NA NA | NA | 7.38E+04 | N/A | | 78933 | Butanone, 2- (MEK) | NA NA | NA NA | NA NA | 2.23E+08 | N/A | | 67641 | Acetone | NA NA | NA | NA | 1,00E+09 | | | 71432 | Benzene | NA NA | NA | NA. | 1,75E+06 | N/A | | 74839 | Bromomethane | NA NA | NA NA | NA. | 1,52E+07 | N/A | | 75150 | Carbon Disulfide | NA NA | NA NA | NA. | 2.67E+06 | N/A | | 108907 | Chlorobenzene | NA | NA NA | NA. | 4.72E+05 | N/A | | 75003 | Ethyl Chloride | NA NA | NA | NA | 5,32E+06 | N/A | | 67663 | Chloroform | NA | NA NA | NA NA | 7.92E+06 | N/A | | 156592 | cis-1,2-Dichloroethylene | NA | NA | NA NA | 3.50E+06 | N/A | | | Cyclohexane | NA_ | NA | NA NA | 5.50E+04 | N/A | | 100414 | Ethylbenzene | NA | NA NA | NA NA | 1.69E+05 | N/A | | | Isopropylbenzene | NA | NA NA | NA . | 5.60E+04 | N/A | | | Methyl cyclohexane | NA | NA | NA | 1.40E+04 | N/A | | 1634044 | Methyl-Tertiary-Butyl Ether | NA | NA. | NA NA | 5.10E+07 | N/A | | / | Methylene chloride | NA | NA | NA | 1.30E+07 | N/A | | | Tetrachloroethylene | NA | NA | NA | 2.00E+05 | N/A | | | Toluene | NA | NA | NA | 5.26E+05 | N/A | | 156605 | trans-1,2-Dichloroethytene | NA | NA | NA | 6.30E+06 | N/A | | | Trichlorgethylene | NA NA | NA | NA. | 1.10E+06 | · N/A | | | Vinyl chloride | NA | NA | NA. | 2.76E+06 | N/A | | 1330207 | - | NA | NA | NA . | 2_20E+05 | N/A | | | Acetophenone | NA | NA | NA | 6.13E+06 | N/A | | | Naphthalene | NA | NA | NA | 3.10E+04 | N/A | | | Methylnaphthalene, 2- | NA | NA. | NA | 2.46E+04 | N/A | | | Biphenyl, 1,1'- | NA | NA | NA . | 6.94E+03 | N/A | | | Acenaphthylene | NA | NA | NA | 3,93E+03 | N/A | | | Acenaphthene | NA | NA | NA . | 4.24E+03 | N/A | | | Fluorene | NA | NA | NA | 1,90E+03 | N/A | | | Phenanthrene | NA | NA . | NA | 1.28E+03 | N/A | | | Anthracene | NA | NA | NA | 4.34E+01 | N/A | | C9-C18 | C9-C18 Aliphatics | NA | NA | NA | 1.00E+04 | N/A | | C11-C22 | C11-C22 Aromatics | NA | NA | NA | 5.80E+06 | N/A | | 05-C8 | C5-C8 Aliphatics | NA | NA | NA | 1.10E+07 | N/A | | C9-C10 | C9-C10 Aromatics | NA | NA NA | NA | 5.10E+07 | N/A | | C9-C12 | C9-C12 Aliphatics | NA | NA | NA. | 7.00E+04 | N/A | | incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air. | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | NA. | NA | | NA | NA. | | NA NA | NA | | NA | NA | | NA | 6.9E-05 | | NA | NA | | NA | NA | | NA | NA | | NA | 2.5E-06 | | NA | NA | | NA NA | NA NA | | | 4.3E-05 | | 8.7E-10 | | | NA | NA | | NA NA | NA | | NA | NA NA | | NA | NA . | | NA NA | NA | | NA . | 3.8E-04 | | NA | NA NA | | NA_ | NA | | NA | NA NA | | NA | NA | | NA NA | NA NA | | NA | NA | | 7.7E-09 | NA . | | NA | NA | | NA . | NA | | 5.4E-06 | 1.4E-02 | | 1.6E-08 | 2,1E-04 | | NA | NA . | | NA NA | NA NA | | NA | 6.5E-04 | | NA | NA | | NA. | NA NA | | NA NA | NA . | | NA | NA | | NA | NA NA | | NA. | 3.6E-04 | | NA | NA NA | | NA | NA NA | | NA | NA NA | | NA NA | NA NA | | NA NA | NA NA | | NA NA | NA | | L | 1., | | TOTAL: | 95% UCL
Cancer
Risk
5E-06 | 95% UCL
HI
2E-02 | | |--------|------------------------------------|-----------------------------------|--| | | |]= Cancer risk >
or HQ/HI>1E+0 | | | Johnson & Ettinger Mod
Inhelation of Volaties for
Future Child Resident S | om Groundwater
Scanario - CT | | | _ | | | | | | | | | | . | | | | | | |---|--|--------------------------|-----------------------------|--------------------------------|-----------------|-----------------------------|---------------------------------|-----------------------------|---------------|----------------------|-------------------------------|--------------------|--|-----------------------|-----------------------|-----------|------------|-----------|--------------| | Southwest Proerties, W.
Aberiona Auto Parts | alla G&H Superfund Ska, Operable Ur | nd 2 | | | | | | | | | | | | | | | | | | | CALCULATE RISK-BAS | SED GROUNDWATER CONCENTR | RATION (enser "X" in "YE | £8° box) | | | | | | | | | | | | | | | | | | | YES | CALCULATE INCREME | OR
ENTAL RISKS FROM ACTUAL GROW
and initial groundwater conc. below) | JUNDWATER CONCEN | ПРАТІОН | | | | | | | | | | | | | | | | | | | YES X | | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | | | ENTER | | ENTER | Deoth
below grade | LWILK | E-A-CH | | ENTER | ENTER | | | | | | | | | | | | | Chemical | Enter Initial group | 95% UCL
groundwater | to battam | Depth | | Average
wolf | Vadore cone
SCS | User-definer
Vadose zone | | ENTER
Vadone zone | ENTER
Valore zone | ENTER
Target | ENTER
Teroet hezerd | ENTER | ENTER | ÉNTER | ENTER | ENTER | ENTER | | CAS No. | | COUNTY SERVICE | of engineed
space floor, | below grade
to water table. | SCS
soi tops | groundwater
temperature. | soli type | soli vapor | exit dry | moli total | scii water filled | riek for | uvolent for | Averaging
time for | Averaging
time for | Екромуге | Exposure | Ехроните | Coversion | | (numbers only; | | C., | l _f | LWT | directly above | Y _a | (used to estimate
soil vecor | OR permeability | bulk density. | porceity. | porceity. | carcinogens, | Ponce cinosene. | carcinogens, | roncercinopene, | duration. | frequency, | time | (solor | | no dashas) | Chemical | (pg/L) | (15 or 200 cm) | (çm) | water labia | (*0) | permesbility) | Note (cm²) | (g/cm²) | (unitions) | 6,, ^V
(cm³/cm³) | TR
(unittees) | THQ
(unitions) | ATc | AT _{NC} | ED | EF | ĘΤ | ÇF | | 71656 | 1,1,1-Trichiprosthane | | 52.12 | 82.6 | LS | 10 | LS | | | | | | [Drineas] | (YF#) | (yra) | (yra) | (days/yr) | (hra/day) | (hravyr) | | 76131 Tri
79005 | chloro-1.2.2-triflourgethane, 1.1.2- | | 52,12 | 52.5 | LS | 10 | LS | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 350 | 16 | 8760 | | 76343 | 1,1,2-Trichloroethene 1,1-Dichloroethene | | 52.12
52.12 | 82.6 | LS | io | L3 | | 1.5 | 0 43 | 0.3 | 1.0E-06
1.0E-06 | 1 1 | 70 | - 3 | 2 | 350 | 16 | 8760 | | 76354
120621 | 1.1-Dichloroethylene | 1.17E-01 | 52.12 | 82.6
82.6 | LS
LS | 1D
10 | LS
LS | _ ; | 1.5 | 0.43 | 0.3 | 1.0E-06 | <u> </u> | 70 | 2 | 2 2 | 350
350 | 16 | 8750
8750 | | 95501 | 1.2.4-Trichlorobenzene 1.2-Dichlorobenzene | | 62.12 | 32,6 | LS | 10 | Ş | | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | + | 70 | 2 | 2 | 350 | 16 | 8760 | | 541731 | Dichlorobenzene, 1,3- | | 62.12
52.12 | 82.6
82.6 | LS
LS | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | 2 | 2 | 350
350 | 16 | 8760
8760 | | 106467 | 1.4-Dichlorobenzene | 4.30E-01 | 52.12 | 82.6 | LS | 10 | L\$
LS | | 1.5 | 0.43 | 0.3 | 1.06-08 | 1 | 70 | 2 | 2 | 350 | 16 | 8760 | | 67641 | Butarione, 2- (MEK) Acetone | | 52.12
52.12 | 82.6 | LS | 10 | LS. | -i | 15 | 0.43 | 0.3 | 1.0E-06 | | 70 | - 2 | 2 | 350 | 16 | 8760 | | 71432
74639 | Benzene | 7.50E-02 | 52.12 | 82 6
82 6 | LS LS | 10 | LS
LS | -1 | 1.6 | 0.43 | 0.3 | 1 DE-05 | <u> </u> | 70 | 2 | 2 | 350 | 16 | 8760
8760 | | 75150 | Bromomediane
Carbon Disoffice | | 52.12 | 82.6 | LS | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | - I | 70 | - 3 | 2 | 350 | 16 | 8760 | | 108907 | Chiorobenzene | · | 52 12
52 12 | 62.0
62.0 | LS | 10 | ĻŞ | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | 2 | - 2 | 350 | 16 | 8760 | | 75003
67663 | Ethyl Chloride | | 52.12 | \$2.6 | LS LS | 10 | LS
LS | - | 1.5 | 0.43 | 0.3 | 1.0E-06 | i i | 70 | 5 | 2 | 350 | 16 | 8760
8760 | | 156592 | Chloroform
cls-1_2-Dichloroshylene | 8.00E+00 | 52.12
52.12 | 82.6 | 15 | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | - 2 | 2 | 350 | 16 | 8750 | | 110827 | Cycloherane | | 52.12 | 52.6
62.6 | LS
LS | 10 | LS
LS | | 15 | 0.43 | 0.3 | 1,05-06 | | 70 | | -2 | 350 | 16 | 8750
8760 | | 98828 | Edvidentarie
sopropularizarie | | 62,12
62,12 | 82.8 | Լ5 | 10 | LS | -1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 350 | 18 | 8760 | | 108972 | Methyl cyclohecene | | 52.12
52.12 | 82.6 | 1.5 | 10 | LS | | 15 | 0.43 | 03 | 1.0E-06
1.0E-06 | 1 | 70 | - 3 |
2 | 360 | 16 | 8760 | | 1634044
75092 | Methyl-Tertiary-Butyl Ether | | 52.12 | 82.5
82.6 | 13 | 10 | LS
LS | | 5 | 0.43
0.43 | 0.3 | 1,0E-06 | 1 | 70 | <u>÷</u> | | 360
350 | 16 | 8760
8760 | | 127184 | Methylene chloride Tearachiorgethylene | 4.18E-01 | 52 12 | 82.5 | , LS | 10 | LS | -i | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 - | 70 | 2 | 2 | 350 | 16 | 8760 | | 108883 | Toluene | V. FOESVI | 52.12
52.12 | 82.6
82.5 | LS
LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1 0E-00 | 1 1 | 70 | 2 | 2 | 350
350 | 16 | 6760
6760 | | 156606
79016 | trans-1,2-Dichloroethyleno | | 52.12 | 82.6 | LS | 10 | LS
LS | | 1.5 | 0.43 | 0.3 | 1 DE-08 | 1 | 70 | 2 | 2 | 350 | 16 | 6760 | | 75014 | Triction cathylene
Virni chlorida | 2 15E+01
1.97E-01 | 52,12
52,12 | 52.6 | LS | 10 | Ļ5 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | ! | 70 | | 2 | 350 | 16 | 8760 | | 1330207
98662 | Хубурра | | 52.12 | 82.6
82.6 | LS
LS | 1D
1D | LS
LS | 1 | 1.5 | 0 43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 - 1 | 350 | 16 | 8760
8760 | | 91203 | Acetophenone
Naphthylene | 1,35€+00 | 52.12 | 82.6 | LS | 10 | Ls | - | 1.5 | 0.43
0.43 | 0.3 | 1,05-06 | 1 | 70 | 2 | 2 | 350 | 16 | 8760 | | 91578 | Methylnaphthelene, 2- | 1,355400 | 62.12
52.12 | 82.6
82.6 | - \ <u>\</u> \$ | 10 | L\$ | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 1 | 70 | 2 | | 350 | 16 | 8760 | | 92524
208868 | Biphanyi 1.1% | | 52,12 | 62 6 | LS
LS | 10 | LS
LS | | 1.5 | 0,43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 350
360 | 16 | 8750
8760 | | 83329 | Acenephthylene
Acenephthene | | 52.12 | 82.8 | (3 | 10 | LS | | 15 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | ! | 70 70 | ? | 2 | 350 | 16 | 8760 | | 86737
85018 | Fluorene | | 52.12
52.12 | 82.6
82.6 | L9
LS | 10 | LS
LS | | 1.5 | 0.43 | 0.3 | 1.06-06 | 1 1-1 | 70 | 2 | 2 | 350
350 | 18 | 8760
8760 | | 120127 | Phonesthops
Anthrecens | 2.10E+00 | 52 12 | 82.6 | ĻŞ | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1,0E-06 | 7 | 70 | ž | 2 | 380 | 16 | 8750 | | CP-C18 | C9-C18 Aliphatics | | 52 12
52 17 | 62.6
82.6 | LS | 10 | LS. | <u> </u> | 1.5 | 0.43 | 0.3 | 1,0E-05
1,0E-05 | 1 1 | 70 | z | 2 | 350 | 16 | B760 | | C11-C22
C5-C8 | C11-C22 Aromatics | | 62.12 | 82.6 | LS L5 | 10 | L8
LS | - 1 | 1.5 | 0.43 | 0.3 | 1,0E-05 | 1 | 70 | 2 | 2 - | 350
350 | 16 | 8760
8760 | | C9-C10 | CS-C8 Aliphatica
CS-C10 Aromatica | | 52.12 | 52.6 | <u>, s</u> | 10 | <u>is</u> | | 1,5 | 0.43 | 0.3 | 1.0E-09 | 1 | 70 | 2 | 2 | 350 | 16 | 8760 | | C9-C12 | C9-C12 Allohados | | 52,12
52,12 | 82.6
82.6 | - 18 | 10 | LS . | 1 | 1.6 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 350 | 16 | 8760 | | Note: | | | 76.16 | 9 <u>4.</u> 9 | | to [| <u>L5</u> | 1 | 1.6 | 0.43 | 5.3 | 1.0E-06 | 1 | 70 | | | 350 | 16 | 8760
8760 | negar 1) Default soil parameters from table 7 of User's Guide for Evaluating Subsurface Vapor Intrusion into Buildung (U.S. EPA Juna 19, 2003) were used for and water filled porcetly (0_m), and organic carbon fraction (f_m), and local porcetly (n), and end by built density (n). Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Resident Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | | | | | Henry's law constant | Henry's law constant | Enthalpy of vaporization at | Normal | | Organic
carbon | Pure component | Unit | | |----------|-------------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------------|----------------|----------------|----------------------|----------------|------------------------------------|------------------| | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | лisk | Reference | | | | in air. | in water. | temperature. | temperature. | boiling point, | point, | temperature. | coefficient. | salubility. | factor. | сопс., | | Chemical | | D _a | D _w | Н | T _R | ΔH _{v.b} | T _B | T _C | Koc | S | URF | RfC | | CAS No. | Chemical | (cm ² /s) | (cm ² /s) | (atm-m³/mol) | (°C) | | (°K) | (°K) | (cm ³ /g) | | (μg/m ³) ⁻¹ | | | CM3 140. | Chemical | (CIII 75) | (CHI 75) | (autriii /iiioi) | (0) | (cal/mol) | (\) | (N) | (cm/g) | (mg/L) | (μg/m) | (mg/m³) | | 7455 | A A A Trablement | 7,05,00 | 0.005.00 | 4 707 00 | | | | | | | | | | | 3 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7,136 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | | | Trichloro-1,2,2-triflouroethane, 1, | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1,326 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | | 5 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 | 9.12E-04 | 25 | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | | 3 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | | 1,1-Dichlaroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | | 1,2,4-1 nchlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | | | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1,242 | 446.00 | 683.96 | · 1.70E+02 | 6.88E+01 | N/A | N/A | | | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | | B Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | | Acetone
Benzene | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6,955 | 329.20 | 508,10 | 5.75E-01 | 1.00E+06 | N/A | N/A | | | : benzene
) Bromomethane | 8.80E-02 | 9.80E-06 | 5.56 E- 03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | | | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A_ | 7.0E-01 | | | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,355 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0 E- 02 | | 1 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333,65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353,85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | | 4 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88 E- 03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1,69E+02 | N/A | 1.0E+00 | | | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,259 | 425.40 | 631.01 | 9.31E+03 | 5,60E+01 | N/A | 4.0E-01 | | | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,324 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5,9E-06 | N/A | | | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | 591,79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 2 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1,333 | 320.85 | 516,50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | N/A | 4.0E-02 | | | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | | 3 | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | | 2 Acetophenone | _6.00E-02 | 8.73E-06 | 1,02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4,62E+01 | 6.13E+03 | N/A | N/A | | | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | • | Methylnaphthalene, 2- | 4.84E-02 | 7,75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | 1 | Biphenyl, 1,1*- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | 792,01 | 4,79E+03 | 3.93E+00 | N/A | 3.0E-03 | | | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 12,155 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | | 7 Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 12,666 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA | NA NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA | NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A |
5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA | NA | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | Appendix C 4 Johnson & Ethinger Model - Celculations Screen Inholation of Volatiles from Groundwater Fullure Chief Resident Scenario - CT Southwest Practice, Wests GAH Superfund Site. Operable Unit 2 Abertona Auto Parte | | Source-
building
separation
L, | Vacione
zone act
air-filled
porosity,
6, ^Y | Vadose zone
effective
total fluid
enturation,
8 _m | Vadose zone
sail
intrinsia
permeability,
k _i | Vacione zone
soil
relative air
permeability,
k _{ie} | Vadose zone
soil
effective vapor
parmeability,
k _e | Thickness of
capitary
2014,
L _{ug} | Total
perceity in
capillary
zone. | Air-filled porosity in capillary zone, | Weter-filted
percetty in
contlary
zens.
0 _{mm} | Fixor-
well
seam
parimeter,
Xerack | Bidg.
ventilation
rete,
C _{leans} | Area of enclosed space below grade. | Creck-
to-tolei
area
rabo, | Crack
death
below
grade,
2 | Entheley of
vectorization at
eve. groundwater
temperature,
ΔH _{c/m} | Henry's law
constant at
ave, groundwater
temperature,
H ₂₈ | Henry's law
constant at
we, groundwall
temperature,
H'rg | |---|---|---|--|---|--|---|--|--|--|---|--|---|-------------------------------------|-------------------------------------|--|--|---|--| | | (cm) | (cm²/cm²) | (cm /cm) | (om²) | (cm²) | (cm²) | (cm) | (cm /cm) | (om³/cm³) | (cm³/cm³) | (cm) | (cm (e) | (cm²) | (unitiess) | (cm) | (cal/mon | (alm-m³/mgl) | (unitiess) | | | | | | | | | | | | | ,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 1,000 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (4000) | 100 NORTH | | 71556 1,1,1-Trichkroethene | 30.48 | 0.130 | 0.659 | 1.62E-05 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 4 00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 7.885 | 8.50E-03 | 1 3.66E-01 | | 76131 Trichloro-1,2,2-triflourcethene, 1,1,2- | 30.48 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 4 00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 1,436 | 4.55E-01 | 1.96E+01 | | 79005 1,1,2-Trichiorcethane | 30 48 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 9.572 | 3.88F-04 | 1,67E-02 | | 75343 1,1-Dichloroethane | 30.48 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4 DOE+03 | Z.54E+04 | 1.80E+06 | 2 22E-04 | 52,12 | 7,450 | 2 88E-03 | 1.24E-01 | | 75354 1,1-Dichlorgethylene | 30.48 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4 00E+03 | 2.54E+04 | 1.80E+06 | 2 226-04 | 52.12 | 6.392 | 1 47E-02 | 6.34E-01 | | 120821 1,2,4-Trichlorobenzene | 30.46 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0 127 | 0,303 | 4.00E+03 | 2.54E+04 | 1.60E+06 | 2 22E-04 | 52.12 | 13.230 | 4.35E-04 | 1.67E-02 | | 95501 1,2-Dichlorobenzene | 30,46 | 0.130 | 0 659 | 1,62E-06 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0 127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+08 | 2 22E-04 | 52.12 | 1,521 | 1 41E-06 | 8.09E-05 | | 541731 Dichlorobenzene, 1,3- | 30.48 | 0.130 | 0.659 | 1.62E-05 | 0.390 | 8.33E-09 | 18.75 | 0.43 | 0 127 | 0.303 | 4.00E+03 | | 1.80E+06 | 2 22E-04 | 52.12 | 1,503 | 4 11E-03 | 1,77E-01 | | 106467 1,4-Dichlorobenzerie | 30.48 | 0.130 | 0 659 | 1.52E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 11,243 | 8 89E-04 | 3.83E-02 | | 78933 Butanone, 2- (MEK) | 30,48 | 0 130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 16,75 | 0.43 | 0 127 | 0.303 | | 2.54E+04 | 1.60E+06 | 2.22E-04 | 52.12 | 1,486 | 4 90E-05 | 2.11E-03 | | 67641 Acetone
71432 Benzene | 30,48 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1,80E+06 | 2.22E-04 | 52,12 | 7,559 | 1 97E-05 | 8.50E-04 | | 74639 Bromomethane | 30.48 | 0 130 | 0.659 | 1.62E-08 | 0 390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+08 | 2.22E-04 | 52.12 | 8,122 | 2.69E-03 | 1,18E-01 | | | 30.48 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 1,337 | 5.52E-03 | 2.38E-01 | | 75150 Carbon Disutifide | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.60E+08 | 2.22E-04 | 52.12 | 6,682 | 6 99E-03 | 3.01E-01 | | 108907 Chlorobenzene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 9,803 | 1.54E-03 | 6.65E-02 | | 75003 Ethyl Chloride | 30.48 | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 1,201 | 7.79E-03 | 3.35E-01 | | 67663 Chloroform | 30,48 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52,12 | 7.554 | 1 86E-03 | 8.02E-02 | | 156592 cts-1,2-Dichloroethylene | 30,48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.B0E+06 | 2.22E-04 | 52.12 | 7,734 | 2.04E-03 | 8 77E-02 | | 110827 Cyclohexene | 30.48 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+06 | 2.22E-04 | 52.12 | 1,466 | 1.75E+00 | 7.54E+01 | | 100414 Ethylbenzene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0,303 | | 2.54E+04 | 1.80E+08 | 2.22E-04 | 52.12 | 10,155 | 3.16E-03 | 1.37E-01 | | 98628 Isopropylbenzene | 30,48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+06 | 2.22E-04 | 52.12 | 1,540 | 1.28E-02 | 5.51E-01 | | 106872 Methyl cyclohexane | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+06 | 2.22E-04 | 52.12 | 1,505 | 3.70E-01 | | | 1634044 Riethyl-Tertiery-Butyl Ether | 30.46 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 5.33E-09 | 18,75 | 0.43 | 0.127 | 0,303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2 22E-04 | 52.12 | 1,447 | 5.16E-04 | 1.59E+01
2.22E-02 | | 75092 Methylene chloride | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+08 | 2.22E-04 | 52.12 | 7.034 | 1.17E-03 | | | 127184 Tetrachiorostrylana | 30,45 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 9,553 | 7.83E-03 | 5.03E-02
3.37E-01 | | 108883 Tolume | 30.48 | 0.130 | 0 659 | 1.62E-08 | 0.350 | 6.33E-09 | 18.75 | 0.43 | D.127 | 0.303 | 4.00E+03 | | 1,80E+06 | 7.22E-04 | 52.12 | 9,154 | 7.83E-03
2.92E-03 | | | 156605 Irans-1,2-Dichlorosthylens | 30.45 | 0.130 | 0.659 | 1.62E-08 | 0.350 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+05 | 2.22E-04 | 52.12 | 1,417 | | 1.26E-01 | | 79016 Trichiomalhylene | 30,48 | 0.130 | 0.659 | 1.82E-08 | 0.390 | £.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.50E+06 | 2.22E-04 | 5Z 12 | 8,557 | 8.27E-03 | 3 56E-01 | | 75014 Vinyl chloride | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 5,000 | 4 79E-03
1,73E-02 | 2 06E-01 | | 1330207 Xylenes | 30,48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.336-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | | | 7.46E-01 | | 98862 Acetophenore | 30,48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6 33E-08 | 15.75 | 0.43 | 0.127 | 0.303 | 4,00E+03 | 2.54E+04 | 1.80E+08 | 2.22E-84 | | 1,542 | 5,86E-08 | 2.52E-04 | | 91203 Nephthalane | 30.48 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 8.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+05 | 2.22E-04 | 52,12 | 1,518 | 6.91E-06 | 3.83E-04 | | 91576 Methylnaphthalana, 2- | 30 48 | 0.130 | 0,659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+05 | 2.22E-04 | 52,12 | 12,913 | 1.52E-04 | 6.55E-03 | | 92524 Biphanyl, 1,5'- | 30 48 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 15.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | 1,506 | B.56E-04 | J 81E-02 | | 205965 Azenephthylene | 30 48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 7.54E+04 | | | 52.12 | 1,472 | 2 G6E-04 | 1 14E-02 | | 53329 Acenephthene | 30.46 | 0.130 | 0.859 | 1.62E-08 | 0.380 | 6.33E-03 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2.54F+04 | 1.80E+08 | 2.22E-04 | 52.12 | 1,513 | 2.45E-04 | 1.05E-02 | | 86737 Pluorene | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-02 | 18.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | | 1.80E+08 | 2.22E-04 | 52,12 | 16,123 | 3.67E-05 | 1.58E-03 | | 85018 Phenonthrene | 30.48 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6 33F-09 | 18.75 | 0.43 |
0.127 | 0.303 | 4.00E+03 | 2.54E+04
2.54E+04 | 1.80E+08 | 2.22E-04 | 52.12 | 16,235 | 2.20E-08 | 9.46E-07 | | 120127 Алён жине | 30.48 | 0.130 | 0.659 | 1.62E-00 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | | 1.50E+06 | 2.22E-04 | 52.12 | 1,479 | 1,14E-04 | 4 90E-03 | | C9-C18 C9-C18 Allphatics | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | | | | | 2.54E+04 | 1.80E+06 | 2 22E-04 | 52.12 | 18,353 | 1.26E-05 | 5 43E-04 | | C11-C22 C11-G22 Aromatics | 30.46 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 4.00E+03 | 2 54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | NA NA | 8 28E-01 | 3.56E+01 | | C5-C8 C5-C8 Alphalics | 30.48 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | 0 43 | 0.127 | 0.303 | 4.00E+03 | 2 54E+04 | 1.80E+06 | 2.22E-04 | 52.12 | NA. | 3.60E-04 | 1.55E-02 | | CS-C10 C9-C10 Aromatics | 30.48 | 0.130 | 0.659 | 1 62E-08 | 0.390 | | | 0.43 | 0,127 | 0.303 | 4.00E+03 | 2.545+04 | 1.80E+06 | 2.22E-04 | 52 12 | NA. | 6.48E-01 | 2.79E+01 | | C9-C12 C9-C12 Allerhatics | 30.48 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 4 00E+03 | 2.54E+04 | 1.80E+08 | 2.22E-04 | 52.12 | NA NA | 3.96E-03 | 1 70E-01 | | | 30.40 | i u iad | 1 0.004 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0 43 | 0.127 | 0 303 | 4.00E+03 | 2.54E+04 | 1.60E+06 | 2.22E-04 | 52,12 | N/A | 7 B0E-01 | 3 36E+01 | - Appendix C.4 Johnson & Ettinger Model - Calcutations Screen Inhelation of Volatiles from Groundwater Future Chief Resident Scenario - CT Southwest Properties, Watte G&H Superfund Site, Oper. Abertone Auto Partis | | iemperature. | diffusion
coefficient. | elfective
diffusion
coefficient. | effective
diffusion
coefficient. | Diffusion
path
tangth, | Convention
seth
length, | Source
vector
conc., | Crack
redus, | Vecor
flow rate
into bidg., | Grack
effective
diffusion
coefficient, | Area of
crack. | equivalent
foundation
Peciet
number, | source
induor
attenuation
coefficient, | infinite
source
bidg.
conc., | Unit
risk
factor, | Reference | |--|----------------------|---------------------------|--|--|------------------------------|-------------------------------|----------------------------|-----------------|-----------------------------------|---|-------------------|---|---|---------------------------------------|-------------------------|----------------| | | р _{тв} | D ^{ell} v | Dea | D ^{ef} | Ū. | L. | G | Formet | ٠ | October. | Arms | exp(Pe') | α | Canada | URF | RfC | | | (g/cm+s) | (cm²(s) | (cm²/s) | (sm²/a) | (cm) | (cm) | (µg/m³) | (cm) | (cm ³ /4) | (cm²/a) | (cm²) | (unitless) | (unitiess) | (µg/m³) | (µg/m³)-1 | (mg/m²) | | | | | | | | | | ,,,, | | | | | | | | | | 71556 1,1,1-Trichlorceltrane | 1.75E-04 | 4.75E-04 | 4.45E-04 | 4.56E-04 | 30.48 | 52,12 | N/A | 0.10 | 5.22E+00 | 4,75E-04 | 4.00E+02 | 1.44E+179 | 1.72E-04 | N/A | N/A | 2.2E+00 | | 76131 Trichloro-1,2,2-Inflouroethene, 1,1,2- | 1.75E-04 | 1.75E-04 | 1,63E-04 | 1.67E-04 | 30,45 | 52.12 | N/A | 0.10 | 5.22E+00 | 1.75E-04 | 4.00E+02 | #NUM! | 1.35E-04 | NA | N/A | 3.0E+01 | | 79005 1,1,2-Trichloroethene | 1.75E-04 | 5,24E-04 | 4.95E-04 | 5.06E-04 | 30.48 | 52.12 | N/A | 6.10 | 5.22E+00 | 5.24E-04 | 4.00E+02 | 1,89E+162 | 1.75E-04 | N/A | 1.6E-05 | Z.2E+00 | | 75343 (1,1-Dichloroethane | 1.75E-04 | 4.58E-04 | 4.29E-04 | 4.40E-04 | 30,40 | 52.12 | N/A | 0,10 | 5.725+00 | 4,58E-04 | 4.00E+02 | 6.94E+165 | 1.71E-04_ | N/A | N/A | 5.0E-01 | | 75354 1,1-Dichlomethylene | 1.75E-04 | 5.47E-04 | 5.12E-04 | 5.25E-04 | 30.48 | | 7.42E+01 | 0.10 | 5.22E+00 | 5.47E-04 | 4.00E+02 | 3.87E+155 | 1.76E-04 | 1.31E-02 | N/A | 2.0E-01 | | 120821 1,2,4-Trichlorobenzene | 1.75E-04 | 2.25E-04 | 2.14E-04 | 2.18E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 2.25E-04 | 4.00E+02 | #NUMI | 1.46E-04
2.04E-04 | N/A
N/A | N/A
N/A | N/A | | 95501 1,2-Dichlorobenzene | 1.75E-04 | 1.56E-02 | 1.60E-02 | 1.58E-02 | 30,45 | 52.12 | N/A | 0,10 | 5.22E+00 | 1.56E-02 | 4.00E+02 | 2.67E+05 | | N/A | N/A | N/A | | 541731 Dichlorobenzane, 1,3- | 1.75E-04 | 2.56E-04 | 2.40E-04 | 2.46E-04 | 30.45 | 52.12 | N/A | 0.10 | 5.22E+00 | 2.56E-04
4.38E-04 | 4.00E+02 | #NUMI
1.36E+194 | 1.51E-04
1.70E-04 | 2.79E-03 | N/A
N/A | 8.0E-01 | | 106487 1,4-Dichurobenzene | 1.75E-04 | 4.36E-04 | 4.12E-04 | 4,22E-04 | 30.48 | 52.12 | 1.64E+01 | 0.10 | 5.22E+00 | | 4.00E+02 | 1.05E+90 | 1.70E-04 | 2,18E-03 | N/A | N/A | | 78933 Butanone, 2- (MEK)
67641 Acetone | 1.75E-04
1.75E-04 | 9.45E-04
2.07E-03 | 9.27E-04
2.06E-03 | 9.34E-04
2.06E-03 | 30.48 | 52.12
52.12 | N/A | 0.10 | 5.22E+00 | 9.45E-04
2.07E-03 | 4.00E+02 | 1.40E+41 | 1.97E-04 | N/A | N/A | N/A | | | 1.75E-04 | 5.42E-04 | 5.07E-04 | 5.20E-04 | 30.48 | | 0.68E+00 | 0.10 | 5.22E+00 | 5.42E-04 | 4.00E+02 | 1.40E+157 | .76E-04 | 1.53E-03 | 7.8E-06 | 3.0E-02 | | 71432 Benzine
74839 Bromomethane | 1.75E-04 | 4.46E-04 | 4,18E-04 | 4.28E-04 | 30.46 | 52.12 | N/A | 0.10 | 5.22E+00 | 4.46E-04 | 4 00E+02 | 5.67E+190 | 1.70E-04 | N/A | N/A | 5.0E-03 | | 75150 Cerbon Disulficie | 1.75E-04 | 6.34E-04 | 5,54E-04 | 6.09£-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 6.34E-04 | 4.00E+02 | 1.39E+134 | 1.79E-04 | N/A | NA | 7.0E-01 | | 108907 Chiorobenzene | 1.75E-04 | 4.55E-04 | 4.27E-04 | 4.37E-04 | 30.45 | 52.12 | NA | 0.10 | 5.22E+00 | 4.55E-04 | 4.00E+02 | | 1.71E-04 | N/A | N/A | 6.0E-02 | | 75003 Ethyl Chloride | 1.75E-04 | 7.66E-04 | 7.16E-04 | 7.34E-04 | 30.48 | 52,12 | N/A | 0.10 | 5.22E+00 | 7.66E-04 | 4.00E+02 | | 1.83E-04 | N/A | N/A | 1.0E+01 | | 87663 Chiproform | 1.75E-04 | 6.43E-04 | 5,02E-04 | 5.17E-04 | 30.45 | 52.12 | N/A | 0.10 | 5.22E+00 | 6.43E-04 | 4 00E+02 | 2.93E+132 | 1.80E-04 | N/A | 23E-05 | 5.0E-02 | | 156592 cis-1,2-Dichloroethylene | 1.75E-04 | 4.59E-04 | 4.30E-04 | 4.41E-04 | 30.48 | | 7.02E+02 | 0.10 | 5.22E+00 | 4.59E-04 | 4.00E+02 | | 1.71E-04 | 1.20E-01 | N/A | 2.0E-01 | | 110627 Cyclohesane | 1.75E-04 | 4.65E-04 | 4.53E-04 | 4.65E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 4.85E-04 | 4 00E+02 | | 1.73E-04 | NA | #N/A | #N/A | | 100414 Ethylberizine | 1.75E-04 | 4.80E-04 | 4.31E-04 | 4.42E-04 | 30,48 | 52.12 | N/A | 0.10 | 5.22E+00 | 4.60E-04 | 4.00E+0Z | | 1.71E-04 | N/A | N/A | 1.0E+00 | | 96825 (economisenzene | 1.75E-04 | 3.95E-04 | 3.70E-04 | 3.79E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 3.95E-04 | 4.00E+02 | | 1.67E-04 | N/A | N/A | 4.0E-01 | | 106672 Methyl cyclohecene | 1.75E-04 | 5.96E-04 | 5,59E-04 | 5.73E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 5.98E-04 | 4.00E+02 | 2.65E+142 | 1.78E-04 | NA | N/A | 3.0E+00 | | 1634044 Methyl-Tentary-Butyl Ether | 1.75E-04 | 6.67E-04 | 6.28E-04 | 6.43E-04 | 30,48 | 52,12 | N/A | 0,10 | 5.22E+00 | 6.67E-04 | 4.00E+02 | 4.02E+127 | 1,81E-04 | N/A | NA | 3.0E+00 | | 75092 Methylene chloride | 1.75E-04 | 6.35E-04 | 5.96E-04 | 6.10E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 6.35E-04 | 4.00E+02 | 1.12E+134 | 1,80E-04 | N/A | 4.7E-07 | 3,0E+00 | | 127184 Tetrachioroethylene | 1.75E-04 | 4.39E-04 | 4.11E-04 | 4.21E-04 | 30,48 | 52.12 | 1.41E+02 | 0,10 | 5,22E+00 | 4.39E-04 | 4.00E+02 | | 1.70E-04 | 2.39E-02 | 5.9E-06 | N/A | | 108883 Toluene | 1.75E-04 | 5.34E-04 | 5.00E-04 | 5.13E-04 | 30,48 | 52.12 | N/A | 0.10 | 5.22E+00 | 5,34E-04 | 4.00E+02 | | 1.75E-04 | N/A | N/A | 4.0E-01 | | 159905 Irans-1,2-Dichlorcethylene | 1.75E-04 | 4.32E-04 | 4.04E-04 | 4.14E-04 | 30,48 | 52.12 | N/A | 0.10 | 5.22E+00 | 4.32E-04 | 4.00E+02 | 1.37E+197 | 1,69E-04 | N/A | N/A | 2.0E-01 | | 79016 Trichicrosthylane | 1.75E-04 | 4 83E-04 | 4.52E-04 | 4.64E-04 | 30,48 | 52.12 | 4.43E+03 | 0.10 | 5.22E+00 | 4.63E-04 | 4.00E+02 | 1.52E+176 | 1.73E-04 | 7.56E-01 | N/A | 4.0E-02 | | 75014 Vinyl chiloride | 1.75E-04 | 6.44E-04 | 6,02E-04 | 8.18E-04 | 30,48 | 52,12 | 1.47E+02 | 0.10 | 5.22E+00 | 6.44 E-04 | 4,00E,402 | 1.44E+132 | 1.80E-04 | 2.64E-02 | 5 6E-06 | 1,0E-01 | | 1330207 Xylenes | 1.75E-04 | 3.75E-03 | 3.61E-03 | 3.79E-03 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 3.755-03 | 4.00E+02 | | 2.01E-04 | N/A | N/A | 1.0E-01 | | 98562 Acelophenone | 1.75E-04 | 2.60E-03 | 2.64E-03 | 2.62E-03 | 30.45 | 52.12 | N/A | 0.10 | 5.22E+00 | 2,90E-03 | 4.00E+02 | | 1.09E-04 | N/A | N/A_ | N/A | | 91203 Naphthalene | 1.75E-04 | 4,70E-04 | 4.50E-04 | 4.57E-04 | 30,45 | 57.12 | 8.86E+00 | 0.10 | 6.22E+00 | 4.70E-04 | 1,00E+02 | | 1,72E-04 | 1.536-03 | N/A | 3.0E-03 | | 91576 Methylnaphthalene, 2- | 1.75E-04 | 3.13E-04 | 2.95E-04 | 3,02E-04 | 30,48 | 52.12 | N/A | 0.10 | 5.22E+00 | 3.13E-04 | 4.00E+02 | | 1.59E-04 | NVA. | N/A
N/A | 3.0E-03 | | 92524 Slpheryl, 1,1'- | 1.75E-04 | 3.16E-04 | 3.01E-04 | 3.06E-04 | 30.40 | 52.12 | N/A | 0,10 | 5.22E+00 | 3.15E-04 | 4.D0E+02 | | 1,69E-04 | NVA | N/A | N/A
3.0E-03 | | 208968 Acanaphthylene | 1.75E-04 | 3.38E-04 | 3.22E-04 | 3.28E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 3.38E-04 | 4.00E+02 | | 1.62E-04 | N/A
N/A | N/A | | | 83329 Acenephthene | 1.75E-04 | 7.33E-34 | 7.31E-04 | 7,32E-04 | 30.48 | 52.12 | N/A | 0.10 | 5.22E+00 | 7,33E-04 | 4.00E+02 | | | N/A | N/A
N/A | 3.0E-03 | | 86737 Fluorene | 1.75E-04 | 8.16E-01 | 4.39E-01 | 8,30E-01 | 30,46 | 52.12 | N/A | 0.10 | 5.22E+00 | 8.16E-01 | 4.00E+02 | | 9.61E-04
1.64E-04 | 1,68E-03 | N/A | 3.0E-03 | | 85018 Phenenthrane | 1.75E-04
1.75E-04 | 3.50E-04 | 3.41E-04 | 3.44E-04
1.61E-03 | 30.48 | 52 12
52 12 | 1,03E+0t
N/A | 0.10 | 5.22E+00 | 3,50E-04
1,60E-03 | 4.00E+02 | | 1.95E-04 | NA
NA | N/A | 3.0E-03 | | 120127 Antivesers | | 1.60E-03 | 1.62E-03 | | | | N/A | 0.10 | 5.22E+00 | 3.64E-04 | 4.00E+02 | | 1.64E-04 | NA. | N/A | 2.0E-01 | | C9-C18 C9-C18 Aliphatics | 1.75E-04
1.75E-04 | 3.64E-04
4.27E-04 | 3.40E-04
4.05E-04 |
3.49E-04
4.13E-04 | 30.48 | 52.12
52.12 | N/A | 0.10 | 5.22E+00 | 4.27E-04 | 4.00E+02 | | 1.69E-04 | N/A | N/A | 5.0€-02 | | C11-C22 C11-C22 Aromatics | 1.75E-04 | 3.54E-04 | 3.40E-04 | 3.49E-04 | 30.44 | 52.12 | N/A | 0.10 | 5.22E+00 | 3.64E-04 | 4.00E+02 | | 1.645-04 | N/A | N/A | 2.0E-01 | | C5-C8 C5-C8 Alignatics | 1.75E-04 | 3.69E-04 | 3.46E-04 | 3.55E-04 | 30.45 | 52,12 | N/A | 0.10 | 5.22E-00 | 3.69E-04 | 4.00E+02 | | 1.65E-04 | N/A | N/A | 5.DE-02 | | C9-C10 C9-C10 Arometics
C9-C12 C9-C12 Alphatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.49E-04 | 30.48 | 52.12 | N/A | 0.10 | 3.ZZE+00 | 3.64E-04 | 4.00E+02 | | 1.64E-04 | N/A | N/A | 2.DE-01 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Future Child Resident Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts ### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL RÍSK CALCULATIONS: | I | | | | | | | | Incremental | Hazard | |---------|---|----------------------|-------------------------|--------------------|------------------|-----------------------|----------|---------------------------|------------------------------| | ļ | | Indoor | Indoor | Risk-based | Pure | Final | | risk from | quotient | | | | exposure | exposure | indoor | component | indoor | | vapor | from vapor | | | | groundwater | groundwater | exposure | water | exposure | | intrusion to | intrusion to | | ľ | | conc.,
carcinogen | conc.,
noncarcinogen | groundwater conc., | solubility,
S | groundwater
conc., | | indoor air,
carcinogen | indoor air,
noncarcinogei | | | | (μg/L) | (µg/L) | (μg/L) | (µg/L) | (μg/L) | | (unitless) | (unitless) | | 7155 | 6 1,1,1-Trichioroethane | NA. | NA NA | NA NA | 1.33E+06 | NA | | NA NA | l na | | 7613 | 1 Trichloro-1,2,2-triflouroethane, 1,1,2- | NA | NA NA | NA | 1.70E+05 | NA | | NA NA | NA. | | 7900 | 5 1,1,2-Trichloroethane | NA | NA NA | NA | 4.42E+06 | NA | | NA NA | NA | | 7534: | 3 1,1-Dichloroethane | NA | NA. | NA | 5.06E+06 | NA NA | | NA NA | NA NA | | 7535- | 1 1,1-Dichloroethylene | NA NA | NA. | NA. | 2.25E+06 | NA NA | | NA NA | 4.2E-05 | | 12082 | 1 1,2,4-Trichlorobenzene | NA | NA . | NA | 3.00E+05 | NA | | NA NA | NA | | 9550° | 1 1,2-Dichlorobenzene | NA | NA, | NA | 2.77E+07 | NA NA | | NA. | NA. | | 54173 | 1 Dichlorobenzene, 1,3- | NA | NA . | NA. | 6.B8E+04 | NA . | j | NA | NA. | | 10646 | 7 1,4-Dichlorobenzene | NA NA | NA. | NA | 7.38E+04 | NA NA | | NA. | 2.2E-06 | | | Butanone, 2- (MEK) | NA NA | NA | NA | 2.23E+08 | NA NA | | NA NA | NA NA | | | 1 Acetone | NA NA | NA NA | NA. | 1.00E+09 | NA . | | NA NA | NA NA | | | 2 Benzene | NA NA | NA. | NA NA | 1.75E+06 | NA | | 2.2E-10 | 3.2E-05 | | 74839 | Promomethane | NA. | NA. | NA . | 1.52E+07 | NA. | | NA NA | NA NA | | 75150 | Carbon Disulfide | NA. | NA. | NA NA | 2.67E+06 | NA. | | NA NA | NA NA | | 108907 | 7 Chlorobenzene | NA NA | NA. | NA | 4.72E+05 | NA | | NA. | NA NA | | 75003 | 3 Ethyl Chloride | NA | NA. | NA. | 5.32E+06 | NA NA | | NA NA | NA NA | | | 3 Chloroform | NA | NA NA | NA NA | 7.92E+06 | NA. | | NA NA | NA NA | | 156592 | cis-1,2-Dichloroethylene | NA | NA NA | NA. | 3.50E+06 | NA | | NA NA | 3.8E-04 | | | 7 Cyclohexane | NA. | NA NA | NA. | 5.50E+04 | NA | | NA. | NA | | | 1 Ethylbenzene | NA. | NA NA | NA. | 1.69E+05 | NA . | | NA NA | NA NA | | | 3 Isopropylbenzene | NA NA | NA NA | NA. | 5.60E+04 | NA NA | | NA NA | NA
NA | | | Methyl cyclohexane | NA NA | NA NA | NA NA | 1.40E+04 | NA. | | NA NA | NA NA | | | Methyl-Tertiary-Butyl Ether | NA NA | NA NA | NA I | 5.10E+07 | NA | - | NA NA | NA NA | | | Methylene chloride | NA | NA. | NA NA | 1.30E+07 | NA. | | NA NA | NA NA | | | Tetrachloroethylene | NA | NA. | NA NA | 2.00E+05 | NA | i | 2.6E-09 | NA NA | | | 3 Toluene | NA | NA NA | NA NA | 5.26E+05 | NA | | NA NA | NA. | | 156605 | trans-1,2-Dichloroethylene | NA | NA NA | NA NA | 6.30E+06 | NA | | NA NA | NA NA | | | Trichloroethylene | NA | NA NA | NA NA | 1.10E+06 | NA | ŀ | NA. | 1.2E-02 | | | Vinyf chloride | NA. | NA NA | NA NA | 2.76E+06 | NA NA | ŀ | 4.2E-09 | 1.7E-04 | | | ' Xylenes | NA | NA | NA. | 2.20E+05 | NA | l | NA NA | NA. | | | Acetophenone | NA | NA NA | NA NA | 6.13E+06 | NA NA | | NA. | NA. | | | Naphthalene | NA. | NA . | NA NA | 3.10E+04 | NA | ł | NA NA | 3.3E-04 | | | Methylnaphthalene, 2- | NA | NA NA | NA NA | 2.46E+04 | NA . | ł | NA NA | NA | | | Biphenyl, 1,1'- | NA NA | NA NA | NA NA | 6.94E+03 | NA NA | ł | NA NA | NA NA | | | Acenaphthylene | NA NA | NA NA | NA NA | 3.93E+03 | NA NA | | NA NA | NA NA | | | Acenaphthene | NA NA | NA | NA . | 4.24E+03 | NA | ł | NA NA | NA NA | | 86737 | Fluorene | NA NA | NA NA | NA NA | 1.90E+03 | NA NA | İ | NA NA | NA NA | | 85018 | Phenanthrene | NA NA | NA NA | NA NA | 1.28E+03 | NA | ŀ | NA NA | 3.6E-04 | | 120127 | Anthracene | NA NA | NA NA | NA AV | 4.34E+01 | NA | ŀ | NA NA | NA | | C9-C18 | C9-C18 Aliphatics | NA NA | NA. | NA NA | 1.00E+04 | NA NA | <u> </u> | NA NA | NA NA | | C11-C22 | C11-C22 Aromatics | NA NA | NA . | NA NA | 5.80E+06 | NA NA | <u> </u> | NA NA | NA NA | | C5-C8 | C5-C8 Aliphatics | NA NA | NA NA | NA NA | 1.10E+07 | NA | | NA NA | NA. | | C9-C10 | C9-C10 Aromatics | NA NA | NA NA | NA NA | 5.10E+07 | NA . | ŀ | NA I | NA NA | | C9-C12 | C9-C12 Aliphatics | NA NA | NA NA | NA NA | 7.00E+04 | NA | } | NA NA | NA | 95% UCL Cancer 95% UCL Risk HI TOTAL: 7E-09 1E-02 = Cancer risk > 1E-05 or HQ/HI>1E+00 END | Appendix C.4 | Aodel - Data Entry Screen | | | | | | | | | | | | | | | | | , | | | |-------------------------|---|---------------------------------------|----------------|------------------|----------------|----------------|-------------------|------|---------------|---------------|-------------|----------------|--|--|-----------------|---------------------------------------|---------------|------------|-----------|-----------| | Johnson & Ettinger k | Acciel - Date Entry Screen | Inhelation of Volatiles | ı fram Groundwater | Future Child Recreet | ional Scenario - RME | Southwest Promise, | Walls G&H Superjund Site, Operable (| July 3 | Whitney Barrel | l | CALCULATE DIEV | 01050 0000 0000 0000 | TOWN CONTAINE HERSEN | BASED GROWNDWATER CONCENT | FLATION (water "X" in "Y | ES'box) | | | | | | | | | | | | | | | | | | | 1 | 1 | YES | L | OR | | | | | | | | - | | | | | | | | | | | | | CALCULATE INCRE | MENTAL RISKS FROM ACTUAL GR | ****************************** | TTT LTDAY | | | | | | | | | | | | | | | | | | | (enter "X" in "YES" b | ox and initial groundwater cone, below) | DOMESTIC SECTIONS FOR | NUMBER OF | YES X | ENTER | ENTER | ENTER | ENTER" | | | | | | | | | | | | | | | | ENTER | | | Depth | | | | ENTER | | ENTER | | | | | | | | | | | | | I CHIEK | | ENTER | below pracis | | | Average | Vedoes zone | | Upper-defined | ENTER CACTEO | | Chemical | | 95% UCL | la battem | Depth | | acil/ | SC8 | | Vadose pone | Vadose zone | Vadose zara | Vadose zone | Target | Target hezard | Averaging | Averaging | LAIGR | ENIER | CHICK | ENTER | | CAS No. | | distriction inter. | of enclosed | balaw grade | 8C8 | groundwater | act type | | sof vapor | poil dry | sof total | exit water-Med | riek for | quotient for | inne for | time for | - | _ | _ | | | 1 | • | conc., | ebece floor, | to water totale, | 40f 0x0e | terriperatura, | (used to estimate | OR | permosality. | busk density. | porcetty. | percuity, | carcinopens, | nongardinogene. | CERCINOCENE. | noncercinogens, | Excesse | Exposure | Exposure | | | (numbers only, | | C _w | با | LWT | directly above | T _a | soll vapor | | L | Pa V | ev. | B_Y | TR | | | | duration, | frequency, | tierre | fector | | no desires) | Chemical | (µg/L) | (15 or 200 cm) | (gm) | water teble | (°C) | | | - Ta | | | | | THO | AT _C | ATec | ED | EF | EI | CF | | | | · · · · · · · · · · · · · · · · · · · | (100 200 011 | 15/11/ | AND ROSE | (0) | permeability) | Note | (cm²) | (g/cm²) | (unidess) | (cm³/cm³) | (ynitiess) | (unitees) | (yre) | (yra) | (we) | (days/yr) | (hra/day) | (hre/yr) | | 71668 | 1,1,1-Trichlorpethane | 4.62E+00 | 15 | 1 194 95 1 | | | | | | | | | | | | | | | | | | 76131 | Trichloro-1.2.2-trifourcethane, 1.1.2- | 4.020100 | | 74.08 | LS | 10 | LS | _1_ | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | - 6 | 6 | 78 | 2.5 | 8760 | | 79005 | | | 15 | 74.90 | L\$ | . 10 | L\$ | | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 6 | <u> </u> | 78 | 2.5 | 8760 | | 76343 | 1.1.2-Trichkroethene | | 15 | 74 98 | LS | 10 | LS | 1 | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | · · · · · · · · · · · · · · · · · · · | | 78 | 2.5 | 8760 | | 75354 | 1.1-Dichlorosthane | 1.20E+02 | 15 | 74.98 | L\$ | 10 | L8 | 1 | | 1,5 | 0,43 | 0.3 | 1.0E-05 | 1 1 | 70 | | | 78 | 2.5 | 8760 | | 120821 | 1,1-Dichloroethylene | | 15 | 74.98 | LS | 10 | (\$ | - 1 | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | 6 | - 2 | 78 | 2.5 | 8760 | | 95501 | 1.2.4-Trichieroberusce | | 15 | 74.98 | LS | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | - · · | | 78 | 2.5 | 8760 | | | 1.2-Dichlorobenzene | 7.43E+00 | 15 | 74.95 | s | 19 | LS | _ T | | 1,5 | 0.43 | 0.3 | 1.0E-06 | + ; | 70 | 6 | | - (0 | 2.5 | 8760 | | 541731
106467 | Dichlorobenzene, 1,3- | 1,906-01 | 15 | 74.98 | LS | 10 | La | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | | | 78 | 2.5 | 8760 | | |
1.4-Dichlorobenzene | 1.97E+02 | 15 | 74.98 | L\$ | 10 | LS | 7 | | 1.5 | 0.43 | 0.3 | 1,0E-08 | | 70 | | 6 | 78 | 2.6 | 8760 | | 78933 | Butanone, 2- (MEK) | | 16 | 74.98 | LS | 10 | L8 | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | ······ | 8 | | 2.5 | 8780 | | 97641
71432 | Acetone | | 16 | 74.98 | LS | 10 | L6 | ~ | | 1.5 | 0.43 | 0.3 | 1.0E-08 | | 70 | | | 78 | 2.5 | 8760 | | 74839 | Berzene | 8.60E+01 | 15 | 74.90 | .3 | 10 | LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | · · · · · · · · · · · · · · · · · · · | % | | | 78 | 2.5 | 8760 | | 75150 | Bromomethene | | 15 | 74.98 | LS | 70 | .5 | 7 | | 1.6 | 0.43 | 0.3*** | 1.0E-06 | 1 1 | 70 | | | 78 | 2.5 | 8760 | | 108907 | Carbon Disulfide | | 15 | 74.96 | LS | 10 | LS. | - 7 | | 15 | 0.43 | 0.3 | 1.0E-00 | | 70 | | - 6 | 78 | 2.5 | 8760 | | | Chioroberzene | 1,80E+01 | 15 | 74.98 | LS | \$0 | LS. | | | 1.5 | 0.43 | 0.3 | 1,0E-08 | | 70 | | | 78 | 2.5 | 8760 | | 75003
67683 | Ethyl Chloride | | 15 | 74.98 | L9 | 10 | LS | 7 | | 1,5 | 0.43 | 0.3 | 1,05-06 | | 70 | | | 78 | 2.5 | 8760 | | 156592 | Chloroform | | 16 | 74.98 | LS | 10 | LŞ | _1 | | 1,5 | D.43 | 0.3 | 1,05-06 | i | 70
70 | } | 6 | 78 | 2.5 | 8760 | | 110827 | cis-1.2-Dichloroethylene | 4.80E+02 | 18 | 74.98 | L8 | 10 | LS | 7 | | 1.8 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | 4 | | 78 | 2.6 | 8780 | | 100414 | Cyclohecare | | 18 | 74 pe | L\$ | 10 | LS | 4 | | 1.5 | D.43 | 0.3 | 1,95-06 | 1 i ··· | 70 | - | | 78 | 2.5 | 8760 | | 96628 | Etyberzere | 4,00E+01 | 15 | 74.95 | 2.5 | 10 | .3 | _1 | | 1.5 | D.43 | D.3 ; | 1.0E-08 | † i | 70 | | - 8 | 78 | 25 | 8760 | | 198872 | popropy/benzene | | 15 | 74.98 | 1,5 | 10 | 18 | | | 1.5 | 0.43 | 0.3 | 1.0E-08 | | 70 | | | 78 | 25- | 8780 | | 19312 | Methyl syclohecene | | 15 | 74.98 | LS. | 10 | 38 | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | <u> </u> | | 78 | 25 | 8760 | | 1634044
75092 | Methyl-Tertlary-Busyl Ether | 5.40E+02 | 15 | 74,98 | 18 | 10 | LS. | 1 " | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | ř | <u></u> | 78 | 2.5 | 8760 | | 127184 | Methylene chloride | | 16 | 74,98 | LS | 10 | S | | | 1.5 | 5.43 | 0.3 | 1,0E-06 | 1 1 | 70 | ž | | | 2.5 | 8750 | | 108883 | Tetrachiorogritylene | | 15 | 74.98 | rs | 10 | Ş | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-05 | 1 1 | 70 | | - 4 | 78 | 2.5 | 8750 | | 156606 | Tokene | 1.20E+03 | 15 | 74,98 | LS. | 10 | ĻS. | 4. | | 1.5 | 0,43 | 0,3 | 1.0E-05 | i | 70 | 6 | A | 75 | 1.5 | 8750 | | 79016 | Farse 1.2 Dichloroethylana | 1.60E+01 | 15 | 74.98 | LS | 10 | LŞ. | _1 | | 1.5 | 0.43 | 0,3 | 1.0E-05 | 1 1 | 70 | | Ř | 76 | 2.5 | ** 8780 T | | 75014 | Trichlorostrylana | 2,00€+00 | 15 | 74.95 | Ų.S | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | <u>v</u> | | 78 | 2.5 | 8750 | | 1330207 | Vind chloride | 4.20E+02 | 15 | 74.98 | L5 | 10 | LB | т. | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | | | 78 | 2.5 | 8780 | | 98962 | XVienes | | 15 | 74,98 | LS | 10 | L\$ | | | 1,5 | 0.43 | 0.3 | 1.05-06 | 1 | 70 | | <u> </u> | 78 | 2.5 | 8760 | | 91203 | Acetophenone | | 16 | 74.95 | LS | 10 | LS | -1- | | 1.5 | 0.43 | 0.3 | 1.DE-06 | 1 1 | 70 | ř | | 78- | 2.5 | 8760 | | 91576 | Nachthalene | 9.60E+01 | 15 | 74.95 | LS | 10 | | 1 | | 1.5 | 0.43 | 0.3 | 1,0E-06 | i | 70 | - 6 | - | | 2.5 | 8760 | | | Metromothylene 2: | | 15 | 74.98 | ĻS | 10 | L5 | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | y . | - 8 | 78 | 75 | 8760 | | 92524 | Biotheryl, 1,17- | 7.000.00 | 15 | 74.96 | LS | 10 | LS | _ | | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | 2 | | 78 | 2.5 | 8780 | | 205955
83329 | Aconophinisme | 1.20E+00 | 15 | 74.90 | L8 | . 10 | L\$ | 7 | | 1.5 | 0.43 | 0.3 | 1.05-06 | | 70 | 8 | - | 78 | 2.5 | 8760 | | 96737 | Acensonthone | | 15 | 74.98 | LS | 10 | L8 | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-08 | | 70 | | | | 2.5 | 8760 | | 85018 | Flucrene | | 15 | 74.98 | ta | 10 | 1.5 | 4 | | 1.5 | 0.43 | 0.3 | 1.0E-95 | ; | 70 | - 8 | - 2 | 78 | 2.5 | 8750 | | | Phenanthrene | 3.10E+00 | 15 | 74,98 | ĻŞ | 10 | LS. | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-05 | 1 | 70 | | | 78 | 25 | 8750 | | 120127 | Antivacana | | 15 | 74.98 | LS | 10 | L5. | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-08 | + ; + | 70 | | | 78 | 25 | 8750 | | C9-C18
C11-C22 | C9-C18 Aliohatica | 5.90E+01 | 15 | 74.96 | LS. | 10 | LS | 1. | | 1,5 | 0.43 | 0.3 | 1.0E-05 | 1 3 | 70 | <u>P</u> | | 78 | 2.5 | 8760 | | C5-C8 | C11-C22 Aromatica | | 15 | 74.00 | 1.5 | 10 | LS | . 1 | | 1.6 | 0.43 | 0.3 | 1.0E-09 | | 70 | | - 6 | 78 | 2.5 | 9750 | | C9-C10 | C5-C8 Allohatica | 4.48E+02 | 15 | 74 98 | .8 | 10 | LS | _1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | ¥ | | 78 | 2.5 | 8760 | | | C9-C10 Aromatics | | 15 | 74.98 | .8 | 10 | | - 1 | | 1,5 | 0.43 | 0.3 | 1.0E-06 | () | / 6 | ¥ | } | 78 | 2.5 | 8760 | | C9-C12 | CS-C12 Allphatics | 6.00E+01 | 15 | 74.98 | 15 | 10 | 18 | | | | N 45 | | <u>!!? </u> | | | | | | 43 | 0100 | ¹⁾ Durlant exit personnelment from table 7 or User's Quide for Evelvating Submarisms Vapor Intrusion feed Building (U.S. EPA June 19, 2003) were used for early value filled porosity (E.), and organic cerbon fraction (fu.), and total porosity (n), and sold dry build density (n). | <u> </u> | Appendix C.4 | | | | | | | | | | | | |----------|--|----------------------|--|----------------------|----------------|-----------------|------------------|------------------|----------------------|-------------|------------------------------------|-----------| | | Johnson & Ettinger Model - Chem | | es Screen | | | | | | | ···· | | | | | Inhalation of Volatiles from Groun | | | | | | | | | | | | | | Future Child Recreational Scenar | | | | | | | | | | | | | | Southwest Proerties, Wells G&H | Superfund S | ite, Operable | Unit 2 | | | | | | | | | | | Whitney Barrel | İ | , | | | | | | | | | | | Henry's | Henry's | Enthalpy of | | | Organic | Pure | | | | | | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | | | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | | | in air, | in water. | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | | Chemical | | D _a | D _w | Н | T _R | ΔH_{vh} | Тв | T _C | K _{oc} | S | URF | RfC | | ÇAS No. | Chemical | (cm²/s) | (cm ² /s) | (atm-m³/mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | (μg/m ³) ⁻¹ | (mg/m³) | | ÇAS 140. | Chemical | (CIII 75) | (CIII 7S) | (atment anoi) | (0) | (cainhoi) | (10) | (\(\(\) \) | (Gitt 7g) | (mg/L) | (µg/iii) | (mg/m) | | 71556 | 1,1,1-Trichloroethane | 7 905 00 | 8.80E-06 | 4 705 00 | 25 | 7 126 | 247.24 | E45.00 | 1.105+03 | 1.33E+03 | N/A | 2.2E+00 | | 76131 | Trichloro-1,2,2-triflouroethane, 1, | 7.80E-02
2.88E-02 | 8.07E-06 | 1.72E-02
5.17E-01 | 25
25 | 7,136
1,326 | 347.24
320.70 | 545.00
481.05 | 1.10E+02
2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | 79005 | 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 | 9.12E-04 | | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 9.12E-04
5.61E-03 | 25
25 | | 330,55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.05E-05
1.04E-05 | | | 6,895 | 304.75 | | | 2.25E+03 | N/A | 2.0E-01 | | 120821 | | | | 2.61E-02 | 25
26 | 6,247 | | 576.05 | 5.89E+01 | 3.00E+02 | N/A
N/A | 2.0E-01 | | 95501 | 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene | 3.00E-02
6.88E-02 | 8.23E-06
9.41E-06 | 1.42E-03
1.62E-06 | 25
25 | 10,471
1,223 | 486.15
465.00 | 725.00
697.50 | 1.78E+03
5.34E+01 | 2.77E+04 | N/A
N/A | N/A | | 541731 | | | 8.85E-06 | | 45 | | | | | | N/A
N/A | N/A | | 106467 | Dichlarobenzene, 1,3- | 4.14E-02 | | 4.70E-03 | 25 | 1,242 | 446.00 | 683.96 | 1.70E+02 | 6.88E+01 | | | | | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6,955 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27 E- 02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | 108907 | Chlorobenzene | 7,30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8,67E-03 | 25 | 1,355 | 249,00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | 67663 | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333,65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A_ | 2.0E-01 | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353.85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | | 100414 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1,69E+02 | N/A | 1.0E+00 | | 98828 | Isopropylbenzene | 6.50E-02 | 7,83E-06 | 1.47E-02 | 25 | 1,259 | 425.40 | | 9.31E+03 |
5.60E+01 | N/A | 4.0E-01 | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5,87E-04 | 25 | 1,324 | 328.36 | 497.11_ | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510.00 | 1.17E+01 | 1,30E+04 | 4.7E-07 | 3.0E+00 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 108883 | Taluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1,19E-05 | 9,39E-03 | 25 | 1,333 | 320,85 | 516,50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | | 1.66E+02 | 1.10E+03 | N/A | 4.0E-02 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2,76E+03 | 8.8E-06 | 1.0E-01 | | 1330207 | Xylenes | 7.69 E- 02 | 8.44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | 98862 | Acetophenone | 6.00E-02 | 8.73E-06 | 1.02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | 91576 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | 92524 | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | | 83329 | Acenaphthene | 4.21E-02 | | 1.55E-04 | 25 | 12,155 | 550.54 | | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 12,666 | 570.44 | | 7.71E+03 | 1.90E+00 | N/A | 3.QE-03 | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613,00 | ., | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | 120127 | Anthracene | 3.24E-02 | | 6.51E-05 | 25 | 13,121 | 615.18 | | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA NA | NA. | NA NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA NA | NA | NA NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | • • | 7,92E-03 | 25 | NA NA | NA NA | NA NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | | 1.56E+00 | 25 | NA NA | NA
NA | NA NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | | OD-012 | On-o is Unbusines | U.VUE-UZ | 1.00=-00 | 1,000,700 | 1 20 | I IVA | 18.75 | 1 144 | 1.50E=05 | 7.50€,101 | IN/A | _ Z.VE=V1 | Appandix C.A Johnson A. Eltinger Model - Calculations Screen Inhisation of Votalities from Groundwater Fruns Child Rectnetions Screenio - RAIE Southwest Physics, Welle O&H Superfund Ste, Operable Unit 2 Whitney Samel | | | Source-
building
ever aton, | Various
20ne soil
sir-filled
paroesty | Vactors zone
effective
total fluid
esturation, | Vedose zone
acit
intrinsic
sermesbility, | Various zone
eoli
reinika pir
purmeability, | Valore zone
acil
effective vacor
permeability. | Thickness of
capillary
zons, | Total
corosity in
capillary
gone, | Air-filed
parasity in
coolisty
2010. | Water-Med
scrooky in
capitary
zona, | Ficor-
wali
eeem
parimater, | Bildq.
veniliation
refe. | Area of
enciceed
space
below
grade. | Creck-
to-total
area
ratio. | Crack
depth
below
prade. | Enthalpy of
vaporization at
ave, proundwater
temperature | Hernvis law
constant at
ave, groundwater
temperature. | Herev's law
constant at
we groundwas
temperature. | Vapor
viscosity at
ave, soil
temperature. | |-------|---|-----------------------------------|--|---|---|--|---|------------------------------------|--|---|--|--------------------------------------|--------------------------------|---|--------------------------------------|-----------------------------------|---|--|--|--| | | | L _T | 6,7 | 8. | A __ | L . | k, | _ | ^- | 5 | a | Xcrack | Charme | A | | Z | ∆H.m | Hra | H** | | | | | ((1 75) | (cm³/cm³) | (cm³(cm³) | (zm²) | (cm²) | (cm²) | ((311) | (cm³/cm³) | (cm²/cm²) | (cm²/cm²) | (ETT) | (om ¹ /s) | () | (Uniforms) | (cm) | (cel/mol) | (atm-m³/mol) | | 3474 | | | | | | | | | | | | 1 | (| | 10111197 | (6.71) | (Asyces) | (ciii) | (cermor) | (acri-m /moi) | (unidees) | (g/cm-s) | | 556 | 1,1,1-Trichioroethene | 59,98 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 4 72E404 | 2.52E+08 | 0.606.00 | 1,30E-04 | 15 | 7,885 | | | | | 1131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | 69,95 | 0.130 | 0,659 | 1.62E-06 | 0.390 | 6.33∈-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1,306-04 | 15 | 1,436 | 8,50E-03 | 3.66E-01 | 1.75E-04 | | | 1,1,2-Trichkorpethane | 56.99 | 0.130 | 0,669 | 1.62E-08 | 0.380 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1725404 | 2.525+00 | 0.50E+06 | 1,30E-04 | 15 | | 4.66E-01 | 1.98E+01 | 1.765-04 | | 354 | 1.1-Dichlorophum | 59,98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.336-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1725-14 | 2.52E+00 | 0.505400 | 1.30E-04 | 15 | 9,572
7,450 | 3.66E-04 | 1.67E-02 | 1.766-04 | | 0821 | 1,1-Dichloroethylene | 59,98 | 0.130 | 0.059 | 1.82E-08 | 0.390 | 6.33E-09 | 18.75 | 0,43 | 0.127 | 0.303 | 1725-404 | 2.52E+00 | 9.50C-100 | 1.30E-04 | 15 | 6.392 | 2,86E-01 | 1.24E-01 | 1.75E-64 | | | 1,2,4-Trichkorobenzene | 66.98 | 0,130 | 0.659 | 1.625-06 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 9.127 | 0.303 | | 2.52E+05 | | 130E-04 | 13 | 13,230 | 1.475-02
4.35E-04 | 6,34E-01 | 1.752-04 | | 1731 | 1.2-Dichlerober.come | 55,98 | 0.135 | 9,050 | 1.625-08 | 0.300 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+00 | | 1.30E-04 | 16 | 1.521 | 1.41E-06 | 87E-02 | 1.76€-04 | | | Dichlorobertgene, 1,3- | 59,98 | 0.130 | 0.650 | 1.62E-08 | 0.300 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1305 01 | 16 | 1,503 | 4.11E-03 | 1,77E-01 | 1,75E-04
1,76E-04 | | 933 | 1.4-Dichigrobenzene | 59.96 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 0,33E-09 | 15.75 | 0,43 | 0.127 | 0.303 | | 2.52E+06 | | 1,306-04 | 15 | 17,243 | 8.89E-04 | 3.63E-02 | 1.76E-04 | | 1541 | Butanone, 2- (MEX) | 59,98 | 0,130 | 0,659 | 1.02E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0,127 | 0.303 | 1.72F+04 | 2.52E+06 | 9.50F+05 | 1.30E-04 | 15 | 1,486 | 4 90E-05 | 2.11E-03 | 1.75E-04 | | 432 | Berme | 59.98 | 0,130 | 0.669 | 1.02E-08 | 0.390 | 6.33E-09 | 18.75 | 0,43 | 0.127 | 0.303 | | 2.62E+06 | | 1,30E-04 | 15 | 7,559 | 1.97E-05 | 0.50E-04 | 1.756-04 | | 839 | Bromomehane | 59,98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,76 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1.30E-04 | 15 | 8,122 | 2.59E-03 | 1.16E-01 | 1.75E-04 | | 150 | Carbon Disutide | 56.60 | 0.130 | 0,659 | 1,625-08 | 0.390 | 0.33E-00 | 18.76 | 0.43 | 0.127 | 0,303 | | 2.52E+08 | | 1.30E-04 | 15 | 1,337 | 5.52E-03 | 2.38E-01 | 1.75E-04 | | 8907 | Chiorobenzene | 56.95 | 0.130 | D,650 | 1,62€-08 | 0.390 | 6.33#-09 | 18.76 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1.30E-04 | 15 | 6,662 | 6.99E-03 | 3,01E-01 | 1.75E-04 | | 003 | | 60.98 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 5.33E-09 | 18.76 | 0.43 | 0,127 | 0.363 | | 2.62E+00 | | 1.30€-04 | 15 | 9,803 | 1.54E-03 | 5.65E-02 | 1,75E-04 | | 663 | Ethyl Chloride
Chloroform | 59.98 | 0.130 | D,658 | 1.62E-08 | D,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72F+04 | 2.52E+08 | 9 50F+08 | 1 30F 04 | 15 | 1,201 | 7.79E-03 | 3.35F-01 | 1,75E-04 | | 6592 | cie-1.2-Oichiorostivierie | 69.98 | 0.130 | 0,859 | 1.62E-08 | 9.390 | 6,33E-09 | 18,76 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | | 1.30E-04 | 15 | 7,854 | 1.86E-03 | 8.02E-02 | 1.75E-04 | | 0827 | Cyclohecane | 59,96 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.335-09 | 18.75 | 0,43 | 0.127 | 0.303 | 1.72F+04 | 2.52€+06 | 9.505+06 | 1 30E 04 | 15 | 7,734 | 2.04E-03 | 6.77E-02 | 1.75E-04 | | 0414 | Ethylbenzene | 59.98 | 0.130 | 0.659 | 1.82E-08 | 0,300 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72F+04 | 2.62E+06 | 9 FOEANS | 1.30E-04 | 15 | 1.486 | 1.76E+00 | 7.54E+01 | 1,75E-04 | | 828 | | 59,90 | 0.130 | 0.669 | 1.82E-08 | 0,390 | 6,33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 1.72F+04 | 2.52E+06 | 9 SYEARS | 30E-04 | 18 | 10,155 | 3.18E-03 | 1.37E-01 | 1.75E-04 | | 8672 | leopropy/benzene | 59,96 | 0.130 | 0.659 | 1.52E-08 | 0,390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0,303 | 1.72E+04 | 2 52€ +05 | 9 ME-OR | 30E-04 | - 15 | 1,540 | | 5.51E-01 | | | 34044 | Methyl cyclohecupe | 50.94 | 0.130 | 0.669 | 1.82E-08 | 0.390 | 8.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | | | 15 | 1,605 | 1,28E-02
3,70E-01 | 1.50E+01 | 1,75E-04
1,75E-04 | | 092 |
Methyl-Tertiany-Butyl Ether
Methylene chloride | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 5,33E-Q9 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1.30E-04 | 15 | 1,447 | 5,16E-04 | 2,22E-02 | 1.75E-04 | | 7184 | Tetrachiorostin/ene | 69,98 | 0,130 | 0,669 | 1.62E-08 | 0.390 | 5,33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | | 15 | 7.034 | 1,17E-03 | 5.03E-02 | 1.75E-04 | | 6883 | Toluene | 59,98 | 0.130 | 0.669 | 1.52E-08 | 0.390 | 6,336-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | | 15 | 9.653 | 7,83E-03 | 3.37E-01 | 1,75E-04
1,75E-04 | | 6605 | | 59,90 | 0.130 | 0.660 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.525+06 | 9.505+04 | 1.30E-04 | 15 | 9.164 | 2.92E-03 | 1.28E-D1 | 1.75E-04 | | 016 | trans-1,2-Dichlorosthylene Trichlorosthylene | 59,98 | 0,130 | 0.650 | 1,62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+05 | 1.30E-04 | 15 | 1,417 | 8.27E-03 | 3.56E-01 | 1,75E-04 | | | Vinyi chloride | 69,98 | 0,130 | 0.859 | 1.62E-06 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0,127 | 0,303 | | 2.52E+06 | | | 15 | 8,557 | 4.79E-03 | 2.05E-01 | 1,75E-04 | | 30207 | Avience | 59.98 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6,33E-00 | 18,75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | | 9.50E+06 | 1.30E-04 | 15 | 5.000 | 1,795-02 | 7.465-01 | 1.75E-04 | | 862 | Acessoherione | 59.98 | D, 136 | 0.669 | 1.626-08 | 0.350 | 6.33E-09 | 18.75 | 0 43 | 0.127 | 0.303 | | 2.52E+06 | | 1.30E-04 | 15 | 1,542 | 5.86E-06 | 2.52E-04 | 1.76E-04 | | 203 | Nachhalene | 59,98 | 0,130 | 0.556 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2,526+06 | | 1.30E-04 | 15 | 1,518 | 8,91E-08 | 3.636-04 | 1.75E-04 | | 576 | McCrytraphthalarm, 2- | 59.86 | 0.130 | 0.650 | 1.42E-08 | 0,390 | 6.33E-09 | 18,76 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 30F 04 | - 12 | 12,913 | 1,525-04 | 6.55E-03 | 1.75E-04 | | 524 | Biphary 1.1% | 59.98 | 0.130 | 0.669 | 1.62E-08 | 0.360 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | | 1.30E-04 | 15 | 1,505 | 5,85E-04 | 3.81E-02 | 1.76E-04 | | 8988 | Acemphitylene | 59.95 | 0.130 | 0.659 | 1,025-06 | 0,390 | 4 33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | | 130F-04 | 15 | 1472 | 2.66E-04 | 1.14E-02 | 1.75E-D4 | | | Acensphilyene | 59.98 | 0.130 | 0.689 | 1,52E-08 | 0.360 | 6,33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1.30E-04 | | 1,513 | 2,45E-04 | 1.05E-02 | 1.75E-04 | | 737 | Fluorene | 50 58 | 0,130 | 0.659 | 1.62E-05 | 0.350 | 0.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | | 1,30E-04 | 15 | 16,123 | 3,676-08 | 1.58E-03 | 1.78E-04 | | 018 | Phenanthyme | 59.95 | 0.130 | 0,680 | 1.62E-08 | 0.393 | 6,33E-09 | 18,76 | 0.43 | 0.127 | 0.303 | | 2.525+00 | | 1.30E-04 | 15 | 16,235 | 2,206-08 | 9,48E-07 | 1,755-04 | | | Andrease Andrease | 50,98 | 0,130 | 0.659 | 1.6ZE-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | 1,30F.04 | 15 | 1,479 | 1.14E-04 | 4.80E-03 | 1,765-04 | | HC18 | C9-C18 Allehatics | 59,98 | 0,130 | 0.659 | 1.62E-08 | D.390 | 6.33E-09 | 15,75 | 0.43 | 0.127 | 0.303 | | 2.52E+09 | | 1,30E-04 | 15 | 18.363 | 1,25E-05 | 5.43E-04 | 75E-04 | | | | 59.98 | 0,130 | D.659 | 1.625-08 | 0.390 | 6.33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | | | 15 | NA NA | 8.28E-01 | 3.56E+01 | 1.75E-04 | | -Ca | C51-C52 Aromatics
C5-C6 Alighands | 50.95 | 6.130 | 0,659 | 1.626-08 | D.350 | 6,33E-09 | 18,75 | 0.43 | 0.127 | Q.303 | 1.72E+04 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | | 3.50E-04 | 1.55E-02 | 1.75E-04 | | +C10 | 00 040 Aug | 59.98 | 0.130 | 0,656 | 1,62E-08 | D.350 | 0.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52€+08 | | 1.30E-D4 | 15 | - W | | 1.55E-02
2.79E+01 | | | | C9-C10 Aromatica | 59.95 | 0.130 | 0,659 | 1.62E-08 | 0,390 | 6.335-09 | 18,76 | 0.43 | 0.127 | 0.303 | | 2.525+06 | | | 15 | NA NA | 5.48E-01
3.99E-03 | | 1.75E-04 | | C12 | C9-C12 Allphatics | 59.98 | 0 130 | 0.659 | 1.62E-08 | 0.300 | 5.335.09 | 18 76 | 0 43 | 0.127 | | | 2.52E+06 | | 1.30E-04 | 15 | NA NA | 3.00E-03 | 1,70E-01 | 1.75E-04 | -- Appendix C.4 Johnson & Ettinoer Model - Calculations Screen Inhulation of Volatiles from Groundwater Futher Child Recreational Science's - RME Southwest Prenties, Wale G&H Superfund Sile, Operable Unit 2 Whitney Barrel | Control Cont | | | Vadose zons
effective
diffusion
confficient, | Conidary
zone
effective
diffusion
conficient. | Total
overali
affective
diffusion
coefficient. | Otflusion
path
fenoth. | Convection path length. | Source
vapor
conc | Crack radius. | Average
vapor
flow rate
mto bido | Creck
effective
diffusion
coefficient. | Atom of crack, | Exponent of
equivolent
foundation
Paciet
number. | infinite
source
indoor
attenuation
coefficient, | Infinite
eourça
bidq
conc | Unit
risk
factor, | Reference
conc., | |---|---------|--|---|---|--|------------------------------|-------------------------|-------------------------|---------------|---|---|----------------|--|---|------------------------------------|-------------------------|----------------------| | Times | | | D" v | D" <u>.</u> | D** | | _ | | | C | Dames | | exp(Fe ⁱ) | | | URF | RIC | | Prof. | | | (cm7e) | (cm*/e) | (cm /a) | (ain) | (071) | (μg/m [*]) | (cm) | (cm*/s) | (cm*/s) | (cm*) | (unitiess) | (unitiess) | (jug/m²) | (hrd/m1) | (mg/m ⁻) | | Prof. | 71556 | 1.1.5-T nohicrosthane | 4.755-04 | 4.45E-04 | 4.655-04 | 59 GR | 15 | 1895-03 | 0.10 | 1 2 7/E404 I | 4.76E.04 | 1 275401 | 4365.104 | 7 925.06 | 1 ME.02 | N/A | T 2 2€+00 | | Transfer | 78131 | Trictions-1.2.2-httlourgethane, 1.1.2- | | | | | | | | | | | | | | | 3 DE-01 | | 1935 1.1-Octorosemen | 79005 | 1.1.2-Trichloroethane | | | | | | | | | | | | | | | 2.2E+00 | | Total | 76343 | 1,1-Dichkroethere | | | | | | | | | | | | | | | 6.0E.01 | | 12001 124-17cherobergers 2,756-04
2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2,756-04 2, | 75354 | 1,1-Dichlorgethylene | | | | | | | | | | | | | | | 2.0E-01 | | | 120821 | 1,2,4-Trichlorobenzane | | | | | | | | | | | | | | | 2 0E-01 | | SATESTIC Deterobations 1. 2.966-04 2.206-04 2.216-04 59.86 16 3.2866-07 0.10 7.186-07 4.366-04 1.216-07 4.086-04 4.206-04 | | 1,2-Dichlorobenzene | 1.56E-02 | | | | | | | | 1.56E-02 | | | | | | NVA | | 100467 14-0chteoptopropers | 541731 | Dichlorobenzene, 1,3- | 2.58E-04 | | | | | | 0.10 | | | | | | | | N/A | | Description | 108467 | 1.4-Dichlorobenzene | | | | | | | | | | | | | | | 8 DE-01 | | EPPS Academie 2,075,00 2,095,03 2015,00 5018 15 10.04 10.10 2715,00 2715,00 2015,00 1055,0 | 76933 | | 9.45E-04 | | | | | | | | | | | | | | N/A | | Triangle | 67641 | Acetone | 2.07E-03 | | | | | | | | | | | | | | N/A | | T450 | 71432 | Benzene | | | | | | | | | | | | | | | 3 DE-02 | | Tellon Certon Districts System | 74639 | Bromomethere | | | | | | | | | | | | | | | 5.0E-03 | | 168607 Obscobargere | 76150 | Carbon Disuffide | | | | 59.98 | | | | | | | | | | | 7.0E-01 | | Total Tota | 108907 | Chiorobenzene | | | | | | | | | | | | | | | 6.0E-02 | | Chlorodom | 75003 | Ethyl Chlorida | | | | | | | | | | | | | | | 1.0E+01 | | 155962 | 67663 | Chloroform | | | | | | | | | | | | | | | 5.0E-02 | | 1106277 Openhastenee | 158552 | cis-1,2-Dichkroethylene | | | | | | | | | | | | | | | 2 0E-01 | | 100414 Sprighensmane | 110627 | Cyclohexane | | | | | | | | | | | | 7 97E-06 | | | NN/A | | 59826 September 3,955-04 3,755-04 3,875-04 59,86 15 | 100414 | Ethylbenzane | | | | | | | | | | | | | | | 1.0E+00 | | 108202 | 98828 | (ecoropy/benzene | 3.95E-04 | 3.70E-04 | | | | | | | | | | | | | 4 DE-01 | | 1534044 Mathylan Ethines 5.016.04 6.266.04 6.366.04 6. | 108872 | Methyl cyclohexarve | | | | | | | | | | | | | | | 3.0E+00 | | 150525 | 1634044 | | | | | | | | | | | | | | | | 3.0E+00 | | 127144 Temphrosethrine | 75092 | | | | | | | | | | | | | | | | 3.0E+00 | | 108645 Toleres | 127184 | Tetrachioroethvierw | | | | | | | | | | | | | | | N/A | | 15805 | | | | | | | | | | | | | | | | | 4 DE-01 | | Post Inchicrostrians | 156605 | | | | | | | | | | | | | | | | 2.0E-01 | | 150217 1 | 79016 | | | | | | | | | | | | | | | | 4 0E-02 | | 130207 Names | 76014 | Vinvi chloride | | | | | | | | | | | | | | | 0E-01 | | \$2,000.00
\$2,000.00 \$2,0 | 1330207 | Xylenes | | | | | | | | | | | | | | | 1.0E-01 | | 61253 Healthinghery | 96662 | Acetochenone | | | | | | | | | | | | | | | N/A | | \$19175 Methylaphthalane, 2: \$3,326-04 \$2,966-04 \$3,076-04 \$69.65 19 NA 0.10 2746-01 3186-04 1,226-05 BNUM: \$6,965.05 NA NA 3.076-04 \$9.65 19 NA 0.10 2746-01 3186-04 1,226-05 BNUM: \$6,965.05 NA NA 3.076-04 3.0 | 91203 | [Naphtralone | | | | | | | | | | | | | | | 3 0€ 03 | | 92584 Spherm, 1,1- | 91575 | Methylnephotelene, 2- | | | | | | | | | | | | | | | 3.0E-03 | | 208886 | 92524 | Blohanyl, 1.1'- | | | | | | | | | | 1 235-03 | | | | | N/A | | E3325 | 208966 | Acunaphthylene | | | | | | | | | | | | | | | 3.0E-03 | | | 53329 | | | | | | | | | | | | | | | | 3.0E-03 | | Section Sect | 88737 | Fluorene | 8.16E-01 | 8.39E-01 | | | | | | | | | | | | | 3.0€-03 | | 100127 Anthroposis 1,0016-03 1,001 | 86018 | Phenanthrane | | | | | | | | | | | | | | | 3.0€-03 | | GP-C19 C9-C10 Allehande 3.04E-04 3.04E-04 3.04E-04 3.04E-04 4.05E-04 69.88 16 2.05E-08 0.10 2.78E-03 3.04E-05 80.88 16 2.05E-08 0.10 2.78E-03 3.04E-03 80.88 1.05E-03 1.05E-0 | | | | | | | | | | | | | | | | | 3.0E-03 | | C011-C2Z C11-C2Z Aromatics 4.27E-04 4.05E-04 4.20E-04 52.00 15 NA 0.10 2.77E-01 4.27E-04 1.20E-03 #NUAH 7.70E-06 (NA NA 5.7.0E-06 C5-0.2.0E-0. | CP-C18 | | | | | | | | | | | | | | | | 2.0E-01 | | CS-C8 CS-C8 Allegraters 2.64E-04 3.40E-04 3.65E-04 59.65 15 1.25E-07 0.10 2.71E-01 1.64E-04 1.23E-03 MNLM 7.12E-06 8.4E-01 NM 27.0E-010 CS-C10 CS-C10 Azerusides 3.60E-04 3.46E-04 3.60E-04 3.60 | | | | | | | | | | | | | | | | | 5.0E-02 | | CS-C10 CS-C10 Aramatics 3.58F-04 3.48E-04 3.68F-04 56.98 16 NA 0.10 2.78E-01 3.58E-04 1.58E-03 MILAM 7.35E-05 NA NA NA S. | | | | | | | | | | | | | | | | | 2.0E-01 | | | | | | | | | | | | | | | | | | | 5.0E-12 | | C9-C12 G3-C12 Alphatics 3,64E-04 3,40E-04 3,55E-04 50 98 15 1.68E+06 0 10 2 78E+04 3,84E-04 1,23E+03 m\UM+ 7,32E-06 1,23E+01 N/A 2,0 | CP-C12 | C9-C12 Allohatica | 3,54€-04 | 3.40E-04 | 3.56E-04 | 52 98 | 15 | 1.50E+06 | 9.10 | 2.74E+01 | 3.64E-04 | | #NUM! | 7.32E-06 | 1.23E+01 | | 2.0E-01 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater *uture Child Recreational Scenario - RME puthwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Vhitney Barrel #### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: ### INCREMENTAL RISK CALCULATIONS: Hazard quotient incremental risk from | | | Indoor exposure groundwater conc., carcinogen (µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure component water solubility, S (µg/L) | Final
Indoor
exposure
groundwater
conc.
(µg/L) | |--------------|---|--|--|---|---|---| | .aere | 1,1,1-Trichloroethane | NA NA | NA NA | NA NA | 1,33E+06 | NA NA | | 1556
6131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA NA | NA NA | NA NA | 1.70E+05 | NA. | | | | NA NA | NA
AN | NA
NA | 4.42E+06 | NA | | 9005 | 1,1,2-Trichloroethane | NA NA | NA NA | NA NA | 5.06E+06 | NA. | | 5343 | 1,1-Dichloroethane | NA NA | NA NA | NA NA | 2,25E+06 | NA | | 5354 | 1,1-Dichloroethylene | NA NA | NA
NA | NA NA | 3.00E+05 | NA | | 120821 | 1,2,4-Trichlorobenzene | | NA
NA | NA NA | 2.77E+07 | NA. | | 5501 | 1,2-Dichlorobenzene | NA. | NA
NA | NA
NA | 6.88E+04 | NA. | | 41731 | Dichlorobenzene, 1,3- | NA NA | | NA
NA | 7.38E+04 | NA. | | 106467 | 1,4-Dichlorobenzene | NA NA | NA NA | | 2.23E+08 | NA. | | 8933 | Butanone, 2- (MEK) | NA NA | NA
NA | NA NA | 1.00E+09 | NA NA | | 7641 | Acetone | NA | NA
NA | NA NA | 1.75E+06 | NA NA | | 1432 | Benzene | NA NA | NA NA | NA
NA | 1.52E+07 | NA NA | | 4839 | Bromomethane | NA NA | NA
NA | NA
NA | 2.67E+06 | NA NA | | 5150 | Carbon Disulfide | NA | NA NA | | 4.72E+05 | NA. | | 108907 | Chlorobenzene | NA NA | NA NA | NA NA | 5.32E+06 | NA NA | | 5003 | Ethyl Chloride | NA NA | NA NA | NA NA | 7.92E+06 | NA NA | | 7663 | Chloroform | NA NA | NA | NA
NA | 3.50E+06 | NA NA | | 56592 | cis-1,2-Dichloroethylene | NA | NA NA | NA | 5.50E+04 | NA NA | | 10827 | Cyclohexane | NA NA | NA | NA NA | 1.69E+05 | NA NA | | 00414 | Ethylbenzene | NA NA | NA NA | NA NA | 5.60E+04 | NA
NA | | 8828 | Isopropylbenzene | NA | NA. | NA | | NA
NA | | 28872 | Methyl cyclohexane | NA NA | NA NA | NA | 1.40E+04 | NA
NA | | 634044 | Methyl-Tertiary-Butyl Ether | NA | NA NA | NA NA | 5.10E+07 | NA
NA | | 5092 | Methylene chloride | NA NA | NA NA | NA NA | 1.30E+07 | NA
NA | | 27184 | Tetrachloroethylene | NA NA | NA NA | NA NA | 2.00E+05 | NA
NA | | 108883 | Toluene | NA NA | NA NA | NA NA | 5.26E+05 | | | 156605 | trans-1,2-Dichloroethylene | NA NA | NA NA | NA | 6.30E+06 | NA NA | | 9016 | Trichloroethylene | NA NA | NA NA | NA NA | 1.10E+06 | NA | | 5014 | Vinyl chloride | NA NA | NA NA | NA NA | 2.76E+06 | NA NA | | 330207 | Xylenes | NA NA | NA_ | NA NA | 2.20E+05 | NA | | 8862 | Acetophenone | NA NA | NA NA | . NA | 6.13E+06 | NA
NA | | 1203 | Naphthalene | NA NA | NA | NA. | 3.10E+04 | NA
NA | | 1576 | Methylnaphthalene, 2- | NA NA | NA . | NA NA | 2.46E+04 | | | 92524 | Biphenyl, 1,1'- | NA NA | NA NA | NA. | 6.94E+03 | NA
NA | | 08968 | Acenaphthylene | NA NA | NA NA | NA NA | 3.93E+03 | | | 3329 | Acenaphthene | NA NA | NA . | NA | 4.24E+03 | NA NA | | 6737 | Fluorene | NA NA | NA NA | NA | 1.90E+03 | NA NA | | 5018 | Phenanthrene | NA NA | NA. | NA. | 1.28E+03 | NA NA | | 20127 | Anthracene | NA NA | NA | NA. | 4.34E+01 | NA NA | | C9-C1B | C9-C18 Aliphatics | NA | NA NA | NA | 1,00E+04 | NA
NA | | C11-C22 | C11-C22 Aromatics | NA NA | NA NA | NA. | 5,80E+06 | NA NA | | C5-C8 | C5-C8 Aliphatics | NA NA | NA | NA. | 1.10E+07 | NA NA | | C9-C10 | C9-C10 Aromatics | NA NA | NA | NA NA | 5.10E+07 | NA | | C9-C12 | C9-C12 Aliphatics | NA NA | NA NA | NA | 7.00E+04 | NA NA | | vapor | from vapor | |--------------|---------------| | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unidess) | (unitiess) | | *********** | | | NA | 1.4E-07 | | NA NA | NA | | NA | NA NA | | NA | 5.2E-06 | | NA NA | NA_ | | NA NA | . NA | | NA NA | NA NA | | | NA NA | | NA NA | | | NA
 | 1.6E-06 | | NA NA | NA NA | | NA_ | NA NA | | 1.2E-09 | 6.1E-05 | | NA NA | NA NA | | NA NA | NA NA | | NA NA | 3.5E-06 | | NA | . NA | | NA | NA | | NA | 3.7E-05 | | NA | NA NA | | NA | 9.6E-07 | | NA NA | NA NA | | NA NA | NA NA | | | 7.6E-07 | | NA NA | | | NA | NA NA | | NA NA | NA | | NA | 6.9E-05 | | NA NA | 4.6E-06 | | NA | 1.8E-06 | | 4.5E-08 | 5.9E-04 | | NA | NA . | | NA . | . NA | | NA | 3.7E-06 | | NA | NA | | NA | NA | | NA | 1.8E-06 | | NA | NA NA | | NA | NA. | | NA | 8,2E-07 | | NA NA | NA. | | NA NA | 1.7E-03 | | NA NA | NA NA | | | | | NA NA | 1.0E-02 | | NA. | NA
1 15 00 | | NA NA | 1.4E-03 | 95% UCL 95% UCL Cancer Risk HI TOTAL: 5E-08 1E-02 = Cancer risk > 1E-05 or HQ/HI>1E+00 | Appendix C 4 |----------------------|--|---------------------------|----------------|-----------------|----------------|--------------|-------------------|------------------|---------------|----------------|------------------|--------------|--|-----------------|--|------------------|------------|-----------|-----------| | Johnson & Ettings | r Model - Data Entry Screen | inhalation of Votati | Kee from Groundwaler | Future Child Recre | adional Scenario - CT | Southwest Promis | es, Wells G&H Superfund Site. Operable | Link 2 | | | | | | | | | | | | | | | | | | | Whitney Barrel | | | | ٠, | CALCULATE RIS | K-BASED GROUNDWATER CONCENT | "RATION (enter "X" is "Y" | ES*box) | YES | OR | CALCULATE INC | REMENTAL RISKS FROM ACTUAL OR | CONCEI | NTRATION | | | | | | | | | | | | | | | | | | (anter "X" in "YES" | box and initial groundwater conc. below) | ì | YES X | | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | | | ì | —— ———— | | Death | rtu i Elv | ENTER | ENTER | | | | | | | | | | | | | | | ENTER | | ENTER | below grade | | | | ENTER | ENTER | | | | | | | | | | | | | ŀ | | 96% UCL | | | | Average | Vadose zone | User-defined | ENTER CNYED | ENTER | | Chamica | | provindwater | to bottom | Depth | | act/ | SCS | VARIONA ZZOTA | Vadose zone | Vedose zone | Vadoes zone | Terget | Terpet hexard | Averaging | Averaging | | ru tru | ENIEN | ENTER | | CAS No. | | | of enclosed | below crade | scs | o sonoweier | ecii type | eoil vanor | eall dry | eoli totel | ect water-filled | resis for | quotient for | time for | time for | Exposure | Броше | F | | | | | conc | apaça ficor, | 10 water Lable. | noil type | temperature. | (used to actimate | OR permeability, | bulk density, | porceity, | porcetty. | carcincoens. | noncarcinogena, | cercinogene, | noncarcinogene, | duration. | frequency, | | Coversion | | (numbers only, | | C _W | Lø. | LWT | directly above | ₹. | acil vapor | k. | ο, ν | n ^v | 4." | TR | THO | | | | | pump | factor. | | no deshes) | Chemical | (µg/L) | (15 or 200 cm) | (cm) | water table | (°C) | permeability) | Note (cm²) | (p/cm³) | | | | | AT _C | AT _{NC} | ED | EF | ET | CF | | | | | | 74-17 | 1174 1751 | 10/ | See (Leaders (A) | ricode (czn.) | (pvcm) | (unities s) | (cm³/cm³) | (unitiess) | (unitiess) | (yra) | (Y.0). | (970) | (deys/yr) | (hrs/day) | [hræ'yr) | | 71656 | 1,1,1-Trichloroethene | 4.62E+00 | 15 | 74.98 | LS | 10 | | | | | | | | | | | | | | | .75131 | Trichlorg-1.2.2-triflourgethene, 1,12- | | 15 | | | | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 7 2 | 26 | 2.5 | 8760 | | 79005 | 1.1.2-Trichlorcethene | | | 74.90 | LS | 10 | LS | | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | † | · | 26 | 2.5 | 8760 | | 75343 | 1.1-Dichloroethans | 2.54E+01 | 15 | 74.98 | ĻS | 10 | ĻS | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | | | 26 | 2.5 | 8750 | | 75354 | 1.1-Dichlor oethylene | 2.51E+V1 | 15 | 74.98 | L\$ | 10 | 4,5 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | , , - | | 26 | 2.5 | 8760 | | 120821 | 1.2.4-Trichlorobenzene | | | 74.98 | 1.5 | 10 | LS. | 1 | 15 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | 2 | 26 | 2.5 | 8760 | | 95501 | 1,2-Dichlorobenzene | 7.43E+00 | 15 | 74.98 | 1.5 | 10 | | .1 | 15 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | 2 | | 26 | 2.5 | 8760 | | 641731 | Dichlorobenzene, 1.3- | 5.10E+00 | | 74 98 | s | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 26 | 2.5 | 8760 | | 106467 | 1.4-Dichlorobenzene | 4.11E+01 | 15 | 74,98 | <u>LS</u> | 10 | LS. | 1 | 16 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 26 | 2.5 | 9760 | | 78933 | Butanone, 2- (MEK) | 4.11E-VI | 15 | 74.98 | LS | 10 | L\$ | | 1.5 | 0.43 | 0.3 | 1,0€-08 | 1 | 70 | | | 26 | 2.5 | 8760 | | 67641 | Acetone | | 15 | 74.98 | LŞ | 50 | LS. | 1 | 1.5 | 0.43 | 0,3 | 1.0E-08 | 1 1 | 70 | | | | 2.5 | 8760 | | 71432 | Senzene | 2,13E+01 | 15 | 74 98 | LS | 10 | L.S | | 1.5 | 0 43 | 0.3 | 1 0E-08 | | 70 | | | 25 | 1 25 | 8760 | | 74839 | Bromomethane | 2.135401 | 15 | 74 96 | LS | 10 | LS | 7 | 1.5 | 0.43 | 0.3 | 1 0E-08 | 1 | 70 | | + : | 26 | 25 | 8760 | | 75150 | | | 15 | 74 98 | 1.5 | 10 | L8 | 1 - | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | + | | 75 | 8760 | | 106907 | Carbon Dauffide
Chlorobenzene | 1005.00 | 15 | 74.08 | LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.DE-04 | | 70 | | | 26 | 25 | 8760 | | 75003 | Ethyl Chlorida | 4.90E+00 | 15 | 74.98 | La | 10 | LS | | 1.5 | 0.43 | 0,3 | 1.0E-00 | 1 | 70 | 3 | | 28 | 2.5 | 8760 | | 67663 | Chlorotorm | | 15 | 74.98 | LS | 10 | LS | 1 | 1,5 | 0.43 | 0.0 | 1.0E-06 | 1 | 70 | | + | 26 | 25 | 8760 | | 150592 | cse-1.2-Dichigroethylene | 9.74E+01 | 16 | 74,98 | LS_ | 10 | 1.9 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-0d | 1 | 70 | | | 26 | 25 | 8760 | | 110827 | Cyclohexane | A'second | 15 | 74,98 | LS | 10 | L8 | 7 | 1.5 | 0.43 | D.J | 1,0E-06 | 1 | 70 | | 2 | 26 | 25 | 8760 | | 103414 | Ethylbenzene | 1.01E+01 | 16
16 | 74.98 | LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | | | 25 | 25 | 8760 | | 96525 | l scor opyfoen pane | 1.012701 | | 74.90 | ĻS | 10 | 20 | | 15 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | + | 26 | 2.5 | 8780 | | 108872 | Methyl cycloheaune | | 16 | 74,98 | LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 1 1 | | 76 | 25 | 8760 | | 1634044 | Methyl-Tertery Butyl Ether | 1 28E+02 | 15 | 74.99 | L5 | 10 | L5 | 1 1 | 1.5 | 0.43 | 0.3 | 1.05-06 | 1 | 70 | - ; · | | 70 | 2.5 | 8760 | | 76092 | Methylene chloride | 625.05 | 15
16 | 74.00 | 15 | 10 | L5 | 1 | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | ; | | 26 | 25 | 8760 | | 127184 | Yetrachloroethylene | | 16 | 74,98 | 1.8 | 10 | L\$ | | 1.5 | 0,43 | 0.3 | 1.0E-06 | 1 | 70 | † | 2 | 26 | 2.5 | 8750 | | 198883 | Youene | 2.45E+02 | 15 | | LS | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-08 | 7 -1 | 70 | - | 2 | 24 | 2.5 | 57B0 | | 156605 | trans-1.2-Dichloroethylane | 4.30E+00 | 15 | 74.98 | ĻŞ | 10 | ĹS. | 1 | 15 | 6.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 28 | 2.5 | 8750 | | 79016 | Trichlorooth dans | 2.00E+00 | | 74.98 | ĻS. | 10 | \$S | 1 | 15 | 0.43 | 0.3 | 1 0E-06 | 1 | 70 | | + | 26 | 26 | 8750 | | 75014 | Vinyl chloride | 8,50E+01 | 15
15 | 74,98
74.98 | Ļ5 | 10 | ĻŞ. | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 |
2 | 26 | 2.5 | 8765 | | 1330207 | | 5,30(10) | 15 | 74.98 | LS | 10 | LS. | 1 | 1.5 | 0.43 | 0.3 | 1,05-06 | 1 | . 70 | | - ; | 26 | 2.5 | 8760 | | 98882 | Acetophenone | | | | LS | 10 | L8 | 1 | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | | 26 | 2.5 | 8760 | | 81203 | Naphthalene | 9.50E+00 | 15
15 | 74 98 | L8 | 10 | <u>L8</u> | | 1.6 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | | - | 26 | 2.5 | 8763 | | 91576 | Methylpschibalens, 2- | #.005*00 | 15 | 74.98 | LS | 10 | l.s | 1 | 15 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | - 3 | | 25 | 2.5 | 8760 | | 92524 | Biphenyl, 1,11- | | (5 | 74 98 | <u>LS</u> | 10 | ĻS | 1 | 15 | 0.43 | 0.3 | 1.05-06 | 1 | 70 | 7 | 1 2 | 26 | 2.5 | 8760 | | 206968 | Acenaphilive | 3 20E+00 | | 74.98 | <u>L</u> S | 10 | LS. | 1 1 | 1.5 | 043 | 0.3 | 1,05-06 | 1 | 70 | *** | ···· | 26 | 2.5 | 8760 | | 83329 | Acensohrhene | | 15 | 74.98 | <u>LS</u> | 10 | LS. | 1 7 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | + | | 1 20 | 2.5 | 8760 | | 86737 | Fluorene | | 15 | 74 98 | LS | 10 | L8 | 1 | 1.6 | 0 43 | 0.3 | 1.0E-06 | 1 1 | 70 | | * | 1 2 | 2.5 | 8760 | | 85018 | Phenantirene | 3,10E+00 | 16 | 74 98 | LS | 10 | L8 | 1 1 | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | | * * | 26 | 2.5 | 8750 | | 120127 | Addressed | 3,105,400 | 15
15 | 74 98 | 1.8 | 10 | Lŝ | 1 | 1,5 | 0.43 | 0.3 | 1.0€-06 | 1 | 70 | | 2 | 26 | 2.5 | 8760 | | C9-C18 | C9-C18 Aliphetics | 4.95E+01 | 15 | 74.98 | LS. | 10 | L3 | 1 | 1.5 | 0.43 | 0.3 | 1,0E-08 | i | 70 | 7 | 2 | 28 | 2.5 | 8760 | | C11-C22 | C11-C22 Aromatics | 7,875-01 | 15 | 74,98 | LS | 10 | La | 1 | 1,5 | 0.43 | D.3 | 1.0E-06 | i | 70 | 3 | 2 | 26 | 2.5 | 8750 | | C5-C8 | C6-C6 Allohatica | 1 64E+02 | 15 | 74.98 | L9 | 10 | LS | 1 | 15 | 0.43 | 0.3 | 1 0E-06 | i | 70 | | 1 5 | 26 | 2.5 | 8760 | | C9-C10 | C9-C10 Aromatica | , 64E-A4 | 15 | 74.95 | ĻŞ | 10 | L3 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | | 5 | 26 | 2.5 | 8760 | | G9-C12 | C9-G12 Alloh sice | 2 67E+01 | | 74,95 | ĻS | 10 | LS . | • | 1.5 | 0.43 | 0.3 | 1 0E-06 | 1 1 | 70 | | † - 5 | 26 | 2.5 | 8760 | | Pinta: | V/V 14 (57/1964 | 20/EPUI | 15 | 74.99 | | 16 | LS | 1 | 1.5 | 0,43 | 0.3 | 1.05.06 | † ; | 70 | | + | ¥ 20 | 4 50 | 0700 | Note: 1) Default soil parameters from table 7 of User's Golde for Evaluating Subsportage Vapor Initiation into Building (U.S. EPA June 19, 2003) were used for soil water Sked porceity (B_m), acid organic carbon fraction (f_m), acid total porceity (n), and soil dry built density (p_s). Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel | | | | | Henr√s | Henr√s | Enthalpy of | | | Organic | Pure | | | |----------|-------------------------------------|----------------------|----------------|-------------------|--------------|-------------------|---------|----------------|----------------------|-------------|-----------------------|-----------| | | | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | | | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | | | in air. | in water. | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | | Chemical | | D, | D _w | н | TR | ΔH _{v.b} | TB | T _C | K₀c | S | URF | RfC | | CAS No. | Chemical | (cm ² /s) | (cm²/s) | (atm-m³/mol) | (°Ĉ) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | (μg/m³) ⁻¹ | (mg/m³) | | CAS NO. | Chemical | (01173) | (\$1113) | (edit-iti /itioi) | (0) | (Galifficity | (, , , | (11) | (5,1,79) | (///g/L) | (1-3) | | | 71556 | 1.1.1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7,136 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | | 76131 | Trichloro-1.2.2-triflouroethane, 1. | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1,326 | 320.70 | 481,05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | 79005 | 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 | 9.12E-04 | 25 | 8.322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | 95501 | 1.2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | 541731 | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1,242 | 446.00 | 683,96 | 1,70E+02 | 6.88E+01 | N/A | N/A | | 106467 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-08 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | 67641 | Acetone | 1,24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6,955 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414,75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6.391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4,72E+02 | N/A | 6.0E-02 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,355 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | 67663 | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353.85 | 530.78 | 1,60E+02 | 5.50E+01 | #N/A | #N/A | | 100414 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,259 | 425,40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,324 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394,40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1,333 | 320.85 | 516.50 | 5.25E+01 | 6,30E+03 | N/A | 2.0E-01 | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-08 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | N/A | 4.0E-02 | | 75014 | Vinyl chioride | 1.06E-01 | 1,23E-05 | 2,71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | | 1330207 | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | 98862 | Acetophenone | 6.00E-02 | 8.73E-06 | 1.02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | 91576 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1,01E-03 | 25 | 1,169 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | 92524 | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | 792.01 | 4.79E+03 | 3,93E+00 | N/A | 3.0E-03 | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 12,155 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 12,666 | 570,44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | 120127 | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA | NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA | NA | 5.00E+03 | 5,80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA . | NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA NA | NA. | NA. | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA | NA | NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | Appendix C.4 Johnson & Ethinger Model - Celosations Screen Inhelelion of Volelibler from Groundwater Future Chief Recreational Scenario - CT Southwest Prparties, Welle G&H Superfund Ste, Operable Unit 2 Wildraw Earnal | | Southwest Prparties, Welle G&H Superfund Ste, Whitney Samel | Operable Unit 2 | | | | | | | | | | | • | | | | | | | |-----------------
---|------------------------------------|--|--|--|---|--|------------------------------|---|---------------------------------|--|------------------------------------|-------------------------------|---|--------------------------------------|-----------------------------------|--|--|--------------| | | | Source-
building
seceration, | Variose
zone soil
eir-filled
porcelify, | Vadose zone
effective
lotal fluid
seturation, | Vadose zone
soli
intrinsic
permesbliky, | Vadote zone
soli
relative sk
permeability, | Vacione zone
soli
effective vapor
permechility, | Thickness of capillary zone, | Yolaf
porcenty in
capitary
zone, | Air-filled porceity in cooldary | Water-filed porosity in capitary zone. | Ficor-
wal
seem
permeter. | Bidg.
vantilation
rate, | Area of
enclosed
space
below
grade. | Crack-
to-lotal
area
natio, | Creck
depth
below
grade, | Enthalpy of
vaportzation of
ave. proundwater
temperature, | Henry's law
constant at
ave. groundwater | | | | | Lŧ | θ, | 8. | 4, | k, | k | L_ | ٠. | θ | A _{wer} | Xerack | | | | | | lemperature. | temperature, | | | | (cm) | (cm²/cm²) | (cm³/cm³) | (cm²) | (cm²) | [cm²] | (cm) | (cm³/cm³) | (cm³/cm³) | (cm²/cm²) | (cm) | (cm²/s) | A _a | 11 | Zone | ΔH _{e-1} | Hre | H*TE | | 71556 | | | | | | | | 1-11-1 | , | (destroyer) | 15117517 | (CID) | (GH /II) | (cm²) | (unitiess) | (cm) | (cal/mol) | (etm-m²/mai) | (unitiess) | | 76131 | 1,1,1-Trichlomethene | 59.98 | 0.130 | 0.659 | 1.62E-G8 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1 72E+04 | | | 1 112 | | | | | | 79005 | Trichlaro-1,2,2-friflourcethane, 1,1,2- | 59.98 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1,72E+04 | | 9.50E+06 | 1.30E-04 | 15 | 7,885 | 8.50E-03 | 3.66E-01 | | 75343 | 1,1,2-Trichloroethane | 59 98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,436 | 4 55E-01 | 1.96E+01 | | 75354 | 1,1-Dichlor cethane | 59.98 | 0.130 | 0 659 | 1,62E-08 | 0.390 | 6.33E-09 | 10.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+05 | 1.30E-04 | 15 | 9,572 | 3.88E-04 | 1.67E-02 | | 120821 | 1,1-Dichloroethylane | 59.98 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06
2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 7,450 | 2.88E-03 | 1.24E-01 | | 95501 | 1,2.4-Trichicrobenzene | 59.98 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | | 9.50E+06 | 1.30E-04 | 15 | 6,392 | 1.47E-02 | 6 34E-01 | | 955U1
541731 | 1,2 Dichlorobenzene | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6 33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 13,230 | 4.35E-04 | 1.87E-02 | | 106467 | Dichlorobenzene, 1,3- | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1 72E+04 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 1,521 | 1 41E-06 | 6 09E-05 | | 78933 | 1,4-Dichlorobenzene | 59,98 | 0 130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2 52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,503 | 4 11E-03 | 1 77E-01 | | | Butanone, 2- (MEK) | 59.98 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 11,243 | 8 69E-04 | 3 83E-02 | | 67641
71432 | Acetone | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04
1.72E+04 | 2 52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,486 | 4 90E-05 | 2.11E-03 | | | Benzene | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7,559 | 1 97E-05 | 8.50€-04 | | 74839
75150 | Bromometrane | 59.98 | D.13Q | 0.639 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | | 1.72E+04 | 2 52E+08 | 9.50E+06 | 1.30E-04 | 15 | 6,122 | 2.69E-03 | 1,16E-01 | | | Carbon Dlauffide | 59.96 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,337 | 5.52E-03 | 2.38E-01 | | 108907 | Chlorobenzene | 59.90 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | . 15 | 6,682 | 6.99E-03 | 3.01E-01 | | 75003 | Elhyl Chlorida | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 043 | | 0.303 | 1.72E+04 | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 9,603 | 1.54E-03 | 6,65E-02 | | 67663 | Chloroform | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 043 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,201 | 7.79E-03 | 3.35E-01 | | 156592 | cls-1,2-Dichloroethylene | 59.96 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7.554 | 1.86E-03 | 5.02E-02 | | 110827 | Cyclohexene | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1,30E-04 | 15 | 7,734 | 2.04E-03 | 8.77E-02 | | 100414 | Ethylbenzene | 59.98 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6 33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,486 | 1.75E+00 | 7.54E+01 | | 98828 | Isopropylbenzene | 59.98 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | | 0.127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 10,155 | 3,18E-03 | 1.37E-01 | | 108872 | Methyl cyclohecene | 59,98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,540 | 1.26E-02 | 5.51E-01 | | 1634044 | Methyl-Tertiary-Butyl Ether | 59,98 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,505 | 3.70E-01 | 1.59E+01 | | 75092 | Methylene chloride | 59.98 | 0 130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | | 0.43 | 0.127 | 0.303 | 1 72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1.447 | 5.16E-04 | 2.22E-02 | | 127184 | Tetrachiomethylene | 59,98 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1 72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 7,034 | 1.17E-03 | 5 03E-02 | | 108683 | Toluene | 59.98 | D. 130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | | 0.43 | 0.127 | 0.363 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 9,553 | 7.63E-03 | 3.37€-01 | | 156605 | trans-1,2-Dichicroethylene | 59.98 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0,303 | 1.72E+04 | 2 52E+06 | 9.50E+06 | 1.306-04 | 15 | 9,154 | 2 92E-03 | 1.26E-01 | | 79016 | Trichloroethylene | 59 98 | 0.130 | 0.659 | 1,62E-08 | 0.390 | | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 1.417 | 8.27E-03 | 3 56E-01 | | 75014 | Vinyl chlorise | 59.95 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+08 | 1.30E-04 | 15 | 8.557 | 4.79E-03 | 2 06E-01 | | 1330207 | Xylense | 59.98 | 0.130 | 0.659 | 1.52E-03 | 0,390 | 6.33E-09
6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+05 | 1.30E-04 | 15 | 5,000 | 1 73E-02 | 7.46E-01 | | 98862 | Acetophenone | 69.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | | 18.75 | 0.43 | 0.127 | 0 303 | | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 1,542 | 5 66F-06 | 2.52E-04 | | 91203 | Naphthalene | 59.98 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0 303 | _1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 1,518 | 8 91E-06 | 3.83E-04 | | 91576 | Mathylnaphtholene, 2- | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18 75 | 0,43 | 0.127 | 0,303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 12,913 | 1.52E-04 | 6.55E-03 | | 92524 | Biphenyl, 1,1' | 59.96 | 0.130 | 0.653 | 1.62E-08 | | 6.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2,52E+08 | 9.50E+08 | 1.30E-04 | 15 | 1.506 | 8.86E-04 | 3.81E-02 | | 705965 | Aconophthylene | 59.96 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+08 | 9.50E+06 | 1.30E-04 | 15 | 1,472 | 2.66E-04 | 1.14E-02 | | 53329 | Acurephiliane | 59.98 | 0.130 | 0.659 | 1.62E-08 | | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50£+06 | 1.30E-04 | 15 | 1,513 | 2.45E-04 | 1,05E-02 | | 66737 | Fluorene | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6 335-09 | 16,75 | 0.43 | 0.127 | 0.303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 16,123 | 3.67E-05 | 1.58E-03 | | 85018 | Phenentivane | 59.98 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 6 33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 1,72E+04 | 2 52E+06 | 9.50E+06 | 1.30E-04 | 15 | 15,235 | 2.20E-08 | 9.48E-07 | | 120127 | Anthracene | 59.85 | 0 130 | 0.659 | | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0,303 | 1.72E+04 | 2.52E+06 | 9.50E+06 | 1 30E-04 | 15 | 1 479 | 1.14E-04 | 4.90E-03 | | C9-C18 | C9-C18 Alighetics | 59.98 | 0.130 | | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0 127 | 0.303 | 1.72E+04 | 2,52E+06 | 9.50E+06 | 1.30E-04 | 15 | 18,353 | 1.25E-05 | | | C11-C22 | C11-C22 Aromatics | 59.98 | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0 127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | 10,333
NA | | 5 43E-04 | | C5-C8 | C5-C8 Aliphatics | 59,98 | | 0.659 | 1.62E-08 | 0.350 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1.30E-04 | 15 | NA NA | 8.28E-01 |
3.56E+01 | | C9-C10 | C9-C10 Aremetics | 59.98 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6 33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | | 2 52E+06 | 9.50E+06 | 1.30E-04 | 15 | NA NA | 3.50E-04 | 1,55E-02 | | C9-C12 | C9-C12 Aliphatics | | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 2.52E+06 | 9.50E+06 | 1.30E-04 | | | 6.48E-01 | 2.79E+01 | | | The area with torons | 53 98 | 0,130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 172E+04 | - JEE TO 1 | V.00E*00 | 1.30 = 04 | 15 | Í NA | 3.96E-03 | 1.70E-01 | (Appendix C.A. Johnson & Etinger Model - Celodations Screen Inhalation of Volatiles from Groundwater Future Child Recreational Screening - CT Southwest Properties, Wells G&H Superfund Site, Oper. Whitney (Samil | | | Vapor
viscosity at
sive, soil
temperature, | Visitions zone
effective
diffusion
coefficient, | Ceptiery
zone
effective
diffusion
coefficient, | Total
overali
effective
diffusion
conflicient, | Datfusion
path
sangth, | Convection
path
length, | Source
yapor
conc., | Creck
redius. | Average
vapor
flow rate
into bidg., | Crack
effective
diffusion
coefficient, | Area of
creak, | Exponent of
equivalent
foundation
Peolet
number, | Infinite
source
indoor
attenuation
coefficient, | infinite
source
bidg.
conc., | Unit
risk
Inctor, | Reference
conc., | |----------------|---|---|--|--|--|------------------------------|-------------------------------|---------------------------|------------------|--|---|-------------------|--|---|---------------------------------------|-------------------------|---------------------| | | | jê ray | D ^{art} , | D. | o**, | t, | L, | Course | Format | سه | D _{orte} | A | exp(Pe ^r) | α | Canada | URF | RIC | | | | (g/cm-s) | (cm²/s) | (om ² /s) | (cm³/e) | (cm) | (em) | (µg/m³} | (om) | (cm²/s) | (cm²/s) | (cm²) | (unitiess) | (unitiess) | (µg/m³) | (µp/m²)-1 | (mg/m³) | 71556 | 1,1,1-Trichloroethane | 1.75E-04 | 4.75E-04 | 4.45E-04 | 4.65E-04 | 59.96 | 15 | 1.59E+03 | 0.10 | 2.74E+01 | 4.75E-04 | 1,23E+03 | 4.36E+304 | 7.92E-06 | 1.34E-02 | N/A | 2.2E+00 | | 76131 | Trichloro-1,2,2-irtilourcethane, 1,1,2- | 1.75E-04 | 1.75E-04 | 1.63E-04 | 1.71E-04 | 59,98 | 15 | N/A | 0,10 | 2.74E+01 | 75E-04 | 1.23E+03 | #NUM! | 5.40E-08 | NA | N/A | 3.0E+01 | | 79005 | 1,1,2-Trichloroethane | 1.75E-04 | 5.24E-04 | 4.95E-04 | 5.15E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 6.24E-04 | 1.Z3E,+03 | 8.568+275 | 8.14E-05 | N/A | 1.5E-05 | 2.2E+00 | | 75343
75354 | 1,1-Dichloroethene | 1,75E-04 | 4.58E-04 | 4.29E-04 | 4.49E-04 | 59,98 | 15 | 3.15E+03 | 0.10 | 2.74E+01 | 4.58E-04 | 1.23E+03 | PNUMI | 7.84E-06 | 2.47E-02 | N/A | 5.0E-01 | | | 1,1-Dichicrostrylene | 1.75E-04 | 5,47E-04 | 5.12E-04 | 5.36E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 5.47E-04 | 1.23E+03 | 3.62E+264 | 8.22E-06 | N/A | N/A | 2.0E-01 | | 120821 | 1,2,4-Triphiorobenzene | 1.75E-04 | 2.25E-04 | 2.14E-04 | 2.22E-04 | 59,9B | 15 | N/A | 0.10 | 2.74E+01 | 2.25E-04 | 1,23E+03 | MNUM | 6.10E-06 | N/A | N/A | 2,0E-01 | | 95501 | 1,2-Dichlorobenzene | 1,75E-04 | 1.58E-02 | 1.60E-02 | 1.57E-02 | 59,98 | . 15 | 4.52E-01 | 0.10 | 2.74E+01 | 1.56E-02 | 1.23E+03 | 1.91E+09 | 1.08E-05 | 4.86E-08 | N/A | N/A | | 541731 | Dichlorobenzene, 1,3- | 1.75E-04 | 2.58E-04 | 2.40E-04 | 2.51E-04 | 59.98 | 15 | 9.02E+02 | 0.10 | 2.74E+01 | 2.56E-04 | 1.23E+03 | MANNI | 6.43E-06 | 5,60E-03 | N/A | N/A | | 106487 | 1,4-Dichlorobenzene | 1.75E-04 | 4.38E-04 | 4.12E-04 | 4.30E-04 | 59,98 | 15 | 1.57E+03 | 0.10 | 2.74E+01 | 4.38E-04 | 1.23E+03 | INUMI | 7.75E-06 | 1.22E-02 | N/A | 8.0E-01 | | 75933
67641 | Butanone, 2- (MEK) | 1.75E-04 | 9.45E-04 | 9.27E-04 | 9.40E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 9.45E-04 | 1,23E+03 | 1.18E+153 | 9.18E-06 | N/A | N/A | N/A | | 71432 | Acelone | 1,75E-04 | 2.07E-03 | 2.06E-03 | 2.07E-03 | 59,98 | 15 | N/A | 0.10 | 2.74E+01 | 2.07E-03 | 1,23E+03 | 9.18E+69 | 1.00E-05 | N/A | I N/A | N/A | | | Benzene | 1.75E-04 | 5.42E-04 | 5.07E-04 | 5.30E-04 | 59,58 | 15 | 2.46E+03 | 0.10 | 2.74E+01 | 5.42E-04 | 1.23E+03 | | 6.20E-06 | 2.02E-02 | 7.8E-05 | 3.0E-02 | | 74839
75150 | Bromomethene | 1.75E-04 | 4.46E-DI | 4.18E-04 | 4,37E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 4.46E-04 | 1.23E+03 | MNUM | 7.79E-06 | N/A | N/A | 5.0E-03 | | 108907 | Carbon Disutide | 1.75E-04 | 6.34E-04 | 5.94E-04 | 6.21E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 6.34E-04 | 1,23E+03 | | 6.50E-06 | N/A | N/A | 7.0E-01 | | 75003 | Chlorobenzene
Ethyl Chlorobe | 1.75E-04 | 4.55E-04 | 4.27E-04 | 4.48E-04 | 59.98 | 15 | 3.26E+02 | 0.10 | 2.74E+01 | 4.55E-04 | 1,23E+03 | MUMF | 7.83E-06 | 2.55E-03 | N/A | 6.0E-02 | | 67663 | Chloroform | 1.75E-04 | 7.66E-04 | 7.16E-04 | 7.49E-04 | 59,98 | 15 | N/A | 0,10 | 2.74E+01 | 7,65E-04 | 1.23E+03 | | 8.63E-06 | N/A | N/A | 1.0E+01 | | 158592 | cle-1,2-Dichigrosthylene | 1.75E-04 | 8.43E-04 | 5.02E-04 | 6.29E-04 | 59,98 | 15 | N/A | 0.10 | 2.74E+01 | 6.43E-04 | 1.23E+03 | | 8.53E-06 | N/A | Z.3E-05 | 5.0E-02 | | 110827 | | 1.75E-04 | 4.69E-04 | 4.30E-04 | 4,49E-04 | 59,96 | 15 | 8.54E+03 | 0.10 | 2.746+01 | 4.59E-04 | 1,23E+03 | MUM | 7.85E-06 | 6.71E-02 | N/A | 2.0E-01 | | 100414 | Cyclohecane | 1,75E-04 | 4.85E-04 | 4.53E-04 | 4.75E-04 | 59.98 | 15 | N/A | Q.†Q | 2.74E+01 | 4.85E-04 | 1.23E+03 | | 7.97E-06 | N/A | #N/A | MVA | | 98828 | Ethylbenzene | 1.75E-04 | 4.60€-04 | 4.31E-04 | 4.51E-04 | 59.98 | 15 | 1.38E+03 | 0.10 | 2.74E+01 | 4.60E-04 | 1.23E+03 | #NUM! | 7.85E-06 | 1.09E-02 | N/A | 1.0E+00 | | 108872 | Isopropybenzene | 1.75E-04 | 3.95E-04 | 3.70E-04 | 3.67E-04 | 59.98 | 15 | N/A | 0.10 | 2,74E+01 | 3.95E-04 | 1.23E+03 | MUM | 7,51E-06 | N/A | N/A | 4.0E-01 | | 1634044 | Methyl cyclohexene | 1.75E-04 | 5.96E-04 | 5.59E-04 | 5.85E-04 | 59.95 | 15 | N/A | 0.10 | 2.74E+01 | 5.98E-04 | 1.23E+03 | | 5.39E-06 | N/A | N/A | 3.0E+00 | | 75092 | Methyl-Yertary-Bulyl Ether | 1.75E-04 | 6.67E-04 | 6,28E-04 | 6.54E-04 | 56.96 | 15 | 2.84E+03 | 0.10 | 2.74E+01 | 6.67E-04 | 1,23E+03 | | 8.60E-06 | 2.44E-02 | N/A | 3.0E+00 | | 1271B4 | Methylene chloride | 1.75E-04 | 6.35E-04 | 5.96E-04 | 6.228-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 6.35E-04 | 1.23E+03 | | 8.51E-06 | N/A | 4.7E-07 | 3.0E+00 | | 108883 | Tetrachlorosthylene
Toluene | 1.75E-04 | 4.39E-04 | 4.11E-04 | 4.30E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 4.39E-04 | J.23E+03 | WUM | 7.75E-06 | N/A | 5.9E-06 | | | 156605 | | 1.75E-04 | 5.34E-04 | 5.00E-04 | 5.23E-04 | 59.95 | | 3.00E+04 | 0.10 | 2.74E+01 | 5.34E-04 | 1.23E+03 | 1.10E+271 | 8.17E-06 | Z.5ZE-01 | N/A | 4 0E-01 | | 79016 | trans-1,2-Dichlorostrylene | 1.75E-04 | 4,32E-04 | 4.04E-04 | 4.23£-04 | 59.98 | 15 | 1 53E+03 | 0.10 | 2.74E+01 | 4.32E-04 | 1.23E+03 | MUM | 7.71E-08 | 1,186-02 | N/A | 2.0E-01 | | 75014 | Trichlarcethylene Vmvl chloride | 1.75E-04 | 4.63E-04 | 4.52E-04 | 1.73E-04 | 59.88 | 15 | 4.13E+02 | 0.10 | 2.74E+01 | 4.83E-04 | 1.23E+03 | | 7.96E-06 | 3.25E-03 | N/A | 4.0E-02 | | 1330207 | Xvienes | 1.75E-04 | 6.44E-04 | 6.02E-04 | 6.30€-04 | 59,98 | 15 | 6,34E+04 | 0.10 | 2.74E+01 | 6.44E-04 | 1.23E+03 | | 8.53E-06 | 5.41E-01 | 8.8E-06 | | | 98862 | Acelophenone | 1.75E-04 | 3.75E-03 | 3.81E-03 | 3.77E-03 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 3.75E-03 | 1,23E+03 | | 1.04E-05 | N/A | N/A | 1.0E-01 | | 91203 | Nachthelene | 1,75E-04 | 2.60E-03 | 2.64E-03 | 2.61E-03 | 59.98 | 15 | N/A | 0 10 | 2,74E+01 | 2.60E-03 | 1.23E+03 | | 1.02E-05 | N/A | N/A | N/A | | 91676 | Metrylnaphthalens, 2- | 1.75E-04
1.75E-04 | 4.70E-04 | 4.50E-04 | 4.645-04 | 59.98 | 15 | 6.29E+01 | 0.10 | 2.74E+01 | 4.70E-04 | 1.Z3E+03 | | 7.92E-06 | 4.98E-04 | N/A | 3.0E-03 | | 2524 | Siphenyl, 1,31- | | 3.13E-04 | 2.95E-04 | 3.07E-04 | 58,98 | 15 | N/A | 0.10 | 274E+01 | 3,13E-04 | 1.23E+03 | MUM | 6.95E-06 | N/A | N/A | 3.0E-03 | | 20896B | | 1.75E-04 | 3.15E-04 | 3,01E-04 | 3.10E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 3,15E-04 | 1,23E+03 | #NUM | 6.98E-06 | N/A | N/A | N/A | | 33329 | Acenaphitylene
Acenaphitylene | 1.75E-04
1.75E-04 | 3.38E-04 | 3.22E-04 | 3.33E-04 | 59.96 | 15 | 3.37E+01 | 0.10 | 2.74E+01 | 3.38E-04 | 1.23E+03 | #NUM: | 7.15E-06 | 2.41E-04 | N/A | 3.05-03 | | 6737 | Ruorene | | 7.33E-04 | 7.31E-04 | 7.338-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 7.33E-04 | 1.23E+03 | | 8.79E-06 | N/A | N/A | 3 0E-03 | | 95018 | Pheruntyene | 1,75E-04 | 8.16E-01 | 5.39E-01 | 8.235-01 | 59.98 | 15 | NA | 0.10 | 2.74E+01 | 5.16E-01 | 1.236+03 | | 3.24E-05 | N/A | N/A | 3.0E-03 | | 120127 | Anityaçana | 1,75E-04
1,75E-04 | 3.50E-04 | 3.41E-04 | 3.47E-04 | 59,98 | 15 | 1.52E+01 | 0.10 | 2.74E+01 | 3.50E-04 | 1.23E+03 | #NUM? | 7.25E-06 | 1.10E-04 | N/A | 3.0E-03 | | C9-C18 | C9-C16 Alphatics | 1.756-04
1.756-04 | 1.60E-03
3.64E-04 | 1.62E-03 | 1.60E-03 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 1.60E-03 | 1.23E+03 | | 9,81E-06 | N/A | N/A | 3.0E-03 | | C11-C22 | C11-C22 Aromatics | 1.75E-04
1.75E-04 | | 3.40E-04 | 3,56€-04 | 59.94 | 15 | 1.78E+06 | 0.10 | 2.74E+01 | 3.64E-04 | 1.23E+03 | #NUMI | 7.32E-06 | 1.29E+01 | N/A | 2.0E-01 | | 25-C8 | | | 4.27E-04 | 4.05E-04 | 4.20E-04 | 59.58 | 15 | N/A | 0.10 | 2.74E+01 | 4,27E-04 | 1.23E+03 | | 7.70E-06 | N/A | N/A | 5.0E-02 | | 29-C10 | C5-C8 Aliphatics
C9-C10 Arcmatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.56E-04 | 59 98 | 15 | 4.58E+08 | 0.10 | 2.74E+01 | 3.64E-04 | 1.23E+03 | | 7.326-06 | 3.35E+01 | N/A | 2.0E-01 | | C9-C12 | | 1.75E-04 | 3.69E-04 |
3.46E-04 | 3.52E-04 | 59.98 | 15 | N/A | 0.10 | 2.74E+01 | 3,69E-04 | 1.Z3E+03 | WILH | 7.355-06 | N/A | N/A | 5,0€-02 | | W-0+2 | C9-C12 Aliphatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.55E-04 | 59.98 | 15 | 6.95E+05 | 0.10 | 2.74E+01 | 3.64E-04 | 1 23E+03 | #NUM | 7.32E-06 | 6.55E+00 | N/A | 2.0E-01 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volaliles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Whitney Barrel #### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL RISK CALCULATIONS: | | | Indoor | Indoor | Risk-based | Pure | Final | | emental
k from | Hazard
quotient | |---------|---|----------------------|-------------------------|-----------------------|------------------|-----------------------|---------------------------------------|--------------------|------------------------------| | | | exposure | exposure | indoor | component | indoor | V | apor | from vapor | | | | groundwater | groundwater | exposure | water | exposure | | usion to | intrusion to | | | | conc.,
carcinogen | conc.,
noncarcinogen | groundwater
conc., | solubility,
S | groundwater
conc., | | oor air.
Snogen | indoor air,
noncarcinogen | | | | (μg/L) | (μg/L) | (μ g/L) | (µg/L) | (μg/L) | | ittess) | (unitless) | | 71556 | 1,1,1-Trichloroethane | NA NA | NA NA | NA | 1.33E+06 | NA | | NA | 4.5E-08 | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA | NA | NA. | 1.70E+05 | NA | | NA | NA NA | | 79005 | 1,1,2-Trichloroethane | NA | NA | NA . | 4.42E+06 | NA | | NA | NA | | 75343 | 1,1-Dichloroethane | NA | NA | NA NA | 5.06E+06 | NA | | NA | 3.7E-07 | | 75354 | 1,1-Dichloroethylene | NA | NA | NA | 2.25E+06 | NA | | NA | NA NA | | 120821 | 1,2,4-Trichlorobenzene | NA | NA | NA. | 3.00E+05 | NA | | NA | NA NA | | 95501 | 1,2-Dichlorobenzene | NA NA | NA. | NA NA | 2.77E+07 | NA | | NA | NA | | 541731 | Dichlorobenzene, 1,3- | NA NA | NA | NA | 6.88E+04 | NA | | NA | NA | | 106467 | 1,4-Dichlorobenzene | NA | NA | NA | 7.38E+04 | NA . | | NA | 1.1E-07 | | 78933 | Butanone, 2- (MEK) | NA. | NA NA | NA | 2.23E+08 | NA | | NA | NA | | 67641 | Acetone | NA | NA | NA | 1.00E+09 | NA | _ | NA | NA | | 71432 | Benzene | NA | NA | NA | 1.75E+06 | NA. | 3. | 3E-11 | 5.0E-06 | | 74839 | Bromomethane | NA | NA | NA | 1.52E+07 | NA | | NA | NA | | 75150 | Carbon Disulfide | NA | NA | NA | 2.67E+06 | NA | | NA | NA | | 108907 | Chlorobenzene | NA | NA. | NA | 4.72E+05 | NA. | | NA | 3.2E-07 | | 75003 | Ethyl Chloride | NA | NA NA | NA. | 5.32E+06 | NA | | NA | NA | | 67663 | Chloroform | NA | NA. | NA | 7.92E+06 | NA. | | NA | NA | | 156592 | cis-1,2-Dichloroethylene | NA | NA | NA | 3.50E+06 | NA | | NA | 2.5E-06 | | 110827 | Cyclohexane | NA | NA | NA | 5.50E+04 | NA | | NA | NA | | 100414 | Ethylbenzene | NA | NA . | NA | 1.69E+05 | NA | | NA | 8.1E-08 | | 98828 | Isopropylbenzene | NA | NA NA | NA. | 5.60E+04 | NA | | NA | NA NA | | 108872 | Methyl cyclohexane | NA | NA | NA. | 1.40E+04 | NA | | ΝA | NA | | 1634044 | Methyl-Tertiary-Butyl Ether | NA | NA | NA | 5.10E+07 | NA | | NA | 6.0E-08 | | 75092 | Methylene chloride | NA | NA | NA | 1.30E+07 | NA | | NA | NA | | 127184 | Tetrachloroethylene | NA NA | NA | NA | 2.00E+05 | NA | | NA | NA | | 108983 | Toluene | NA | NA | NA | 5.26E+05 | NA | | NA | 4.7E-06 | | 156605 | trans-1,2-Dichloroethylene | NA | NA | NA | 6.30E+06 | NA | | NA | 4.4E-07 | | 79016 | Trichloroethylene | NA NA | NA | NA | 1.10E+06 | NA. | | NA | 6.1E-07 | | 75014 | Vinyl chloride | NA NA | NA | NA | 2.76E+06 | NA. | 1.0 | E-09 | 4.0E-05 | | 1330207 | Xylenes | NA | NA NA | NA | 2.20E+05 | NA. | | NA . | NA. | | 98862 | Acetophenone | NA. | NA. | NA | 6.13E+06 | NA . | | NA . | NA | | 91203 | Naphthalene | NA | NA. | NA | 3.10E+04 | N/A | | NA | 1.2E-06 | | 91576 | Methylnaphthalene, 2- | NA | NA NA | NA | 2.46E+04 | NA. | | NA | NA NA | | 92524 | Biphenyl, 1,1'- | NA | NA NA | NA | 6.94E+03 | NA | | NA . | NA. | | 208968 | Acenaphthylene | NA | NA NA | NA | 3.93E+03 | NA | | NA | 6.0E-07 | | 83329 | Acenaphthene | NA | NA NA | NA | 4.24E+03 | NA | | NA | NA | | 86737 | Fluorene | NA | NA NA | NA . | 1.90E+03 | NA | | NA | NA | | 85018 | Phenanthrene | NA | NA NA | NA . | 1.2BE+03 | NA | <u> </u> | NA | 2.7E-07 | | 120127 | Anthracese | NA | NA NA | NA | 4.34E+01 | ŇA | | NA. | NA NA | | C9-C18 | C9-C18 Aliphatics | NA | NA NA | NA | 1.00E+04 | NA | | NA I | 4.8E-04 | | C11-C22 | C11-C22 Aromatics | NA | NA NA | NA. | 5.B0E+06 | NA | · · · · · · · · · · · · · · · · · · · | NA. | NA NA | | C5-C8 | C5-C8 Aliphatics | NA | NA NA | NA | 1.10E+07 | NA | | NA. | 1.2E-03 | | C9-C10 | C9-C10 Aromatics | NA | NA NA | NA | 5.10E+07 | NA NA | | NA. | NA NA | | C9-C12 | C9-C12 Aliphatics | NA | NA NA | NA | 7.00E+04 | NA NA | | VA. | 2.4E-04 | 95% UCL Cancer 95% UCL Risk HI TOTAL: 1E-09 2E-03 = Cancer risk > 1E-05 or HQ/HI>1E+00 | | 1 |---------------------------|---|------------------------|----------------|-----------------|----------------|----------------|-------------------|------------------------|---------------|-------------|---|--------------------|------------------------------|-----------------------|----------------------------|--|------------------------|------------|--------------| | Appendix C.4 | | | | | | | | | | | | | | | | | | . — | | | Johnson & Ettinger | Model - Data Entry Screen | Inhalation of Votable | re from Groundwaler
Idonal Scenario - RME: | come ocenimo - rovis
I. Welle G&H Superfund Site, Operable U | L | | | | | | | | | | | | | | | | | | | Murphy Weste Oil | . I very out i desarbid des, operand d | mm. 2 | | , | 1 | CALCULATE RISK | -BASED GROUNDWATER CONCENTA | ATION (enter "X" in "Y | ES" box) | | | | | | | | | | | | | | | | | | 1 | ļ | YE8 | 1 | OR | CALCULATERNO | EMENTAL RISKS FROM ACTUAL GRO | Jenter 'X' in 'YES" | box and initial groundwater conc. below) | ANNOWALER SOME | REPORTION | 1 | YES X | | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | | | ļ | | | Dec#s | 44.64 | 64.64 | EHILK | ENTER | | | | | | | | | | | | | | ENTER | | ENTER | below grade | | | Average | Vadose zone | ENTER
Lieur-defined | ENTER | ENTER | | | | | | | | | | | 1 | | 95% UCL | lo bottom | Depth | | eoil/ | 8C8 | VIENOME ZONE | | Vádose zone | ENTER | Chemical | | GEOLENIA MINE | of enciosed | below grade | SCS | groundwater | soft type | soil vapor | eoil dry | ecil total | Vacione zone
soii water-filled | Target
riek for | Target hazard
quodent for | Averaging
time for | Averaging | Exposure | - | B | | | CAS No. | | conc., | space floor, | to water table, | soil lype | temperature, | fused to setumate | OR permeability. | bulk density, | parosity. | porcetty, | carcinogana, | nancarainogene, | carcinogens. | ime for
Poncercinageme, | duration, | Exposure
frequency, | Exposure | Coversion : | | (numbers only, | | C _w | با | LWT | directly above | T _# | adi vapor | k. | P, V | n, | 6_V | TR | THQ | AT _C | ATHC | ED. | EF | ET | CF | | no deshee) | Chemical | (µg/L) | (15 or 200 cm) | (om) | water table | (°C) | permesbility) | Note (cm²) | (O/cm²) | (unitions) | (cm³/cm³) | (unideas) | (unitiess) | (Ma) | *** | | | | | | | | | | | | | | 1337 | | (A.1) | , / Later) | . /ciscons; | (Assets) | [A[3] | (Y4) | (yra) | (deye/yr) | (lvs/day) | (hra/yr) | | 71656 | 1,1,1-Trichloroethane | 5.27E+01 | 16 | 62.78 | LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | Υ | 70 | T | 1 6 | 76 | 2,5 | 8750 | | 76131 | Trichloro-1.2.2-triflourostheris, 1.1.2- | | 16 | 62,78 | LS. | 10 | | 1 | 1,6 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 78 | 2.5 | 8760 | | 78343 | 1,1,2-Trichtoroeturre | | 15 | 62.78 | LS | 10 | S | 7" | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | 6 | × | 78 | 2.5 | 8750 | | 76354 | 1.1-Dichloroethene | 7,24E+D1 | 16 | 62.78 | . 8 | 10 | 8 | <u> </u> | 1.5 | 0.43 | 0.3 | 1,02-06 | 1 | 70 | 6 | ě – | 78 | 2.5 | 8760 | | 120821 | 1,1-Dichlorostrytere 1,2,4-Trichloroberzere | 9,00E+00 | 15 | 62.78 | LS | 10 | LS | ! | 1.5 | 0.43 | 0.3 | 1,0E-08 | 1 | 70 | 6 | 6 | 76 | 2.5 | 8760 | | 95501 | 1.2-Dichiorobenzene | 1,00E+00 | 16 | 62,78
62,78 | 18 | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | . 1 | 70 | 6 | 6 | 76 | 2.5 | 8760 | | 541731 | Dichlorobenzene, 1,3- | 11970.33 | 16 | 62.78 | - iš | 10 | LS
LS | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 11 | 70 | <u> </u> | | 78 | 2.5 | 8760 | | 106487 | 1.4-Dichiorobenzene | | 15 | 62,78 | เร | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 70 | - | | 78 | 2.5 | 8760 | | 78933
67641 | Butanone, 2- (MEX) | | 16 | 62.76 | LS | . 10 | LS . | 1 | 15 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | } | 78
78 | 2.5 | 6760 | | 71432 | Acetone | 2.42E+01 | 15 | 52.78 | LS | 10 | LS | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | . 70 | - X | } | 78 | 2.5 | 8760 | | 74839 | Bertane | 6,64E+00 | 15 | 92.78 | | 10 | | 1. | 1.6 | 0.43 | 0.3 | 1.0E-08 | 1 1 | 70 | 6 | ě | 76 | 2.5 | 6760 | | 75150 | Bromomethane
Carbon Disulfide | 1,00E+00 | 15
15 | 62.78
62.78 | <u> </u> | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1. | 70 | | 9 | 76 | 2.5 | 6760 | | 168667 | Chlorobenzene | 1.00E+00 | 15 | 62 78 | LS
LS | 10 | LS
LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 75 | 2.5 | 6760 | | 75003 | Ethyl
Chloride | 3.06E+01 | 16 | 62.78 | LS | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | | | 78 | 2.5 | 8760 | | 67663
156562 | Chloroform | | 15 | 62.78 | LS | 10 | . LS | 1 | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | | 9 | 78
78 | 2.5 | 8760
8760 | | 110827 | cia-1.2-Dichlorosthylene | 7.43E+02 | 18 | 62.78 | LS | 10 | LS. | | 1.5 | 0.43 | 5.3 | 1,9E-06 | 1 1 | 70 | ` | | 78 | 2.5 | 8760 | | 100414 | Cycloheume
Ethylberizene | 7.61E+00 | 18 | 62.78 | L6 | 10 | L9 | 1 | 1.5 | 0.43 | 0.3 | 1.9E-06 | 1 | 70 | | 6 | 78 | 2.5 | 8760 | | 98828 | Self-Applications | 7.81E+90 | 15 | 62.78
62.78 | L8 | 10 | LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 6 | 6 | 78 | 2.5 | 8760 | | 98528
108872 | Methyl cyclohecune | 7.00E+00 | 15 | 62.78 | LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.3 | 1,05-06 | 1 1 | 70 | - 6 | - 6 | 78 | 2.5 | 8760 | | 1634044 | Medick-Testany-But-I Ether | | 15 | 62.78 | | 10 | LS | + | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | + 1 | 70 | <u> </u> | 6 | 78 | 2.5 | B7ED | | 75002 | Methylene chloride | 1.59E+01 | 15 | 62.76 | LS- | 10 | LS | | 1,5 | 0.43 | 1 | 1.0E-06 | 1 1 | 70 | | | 78
78 | 2.5 | 8760
8760 | | 127184 | Tetrachioroethyseno | 7.00E+00 | 15 | 62.78 | L5 | 10 | LS | 7 | 1,5 | 0.43 | 0.3 | 1,0E-06 | i i | 70 | | | 78 | 2.5 | 5760 | | 156605 | Tokene | 1.71E+01 | 15 | 62.78 | LS | 10 | LS. | 1 | 1,5 | 0.43 | 0.3 | 1.05-08 | i | 70 | 6 | 6 | 78 | 2.5 | 8760 | | 79016 | trans-1,2-Dichlorgethylene Trichlorgethylene | 1.23E+01
3.31E+01 | 15 | 62.78 | | 10 | L8 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 76 | 6 | 6 | 78 | 2.6 | 8760 | | 75014 | Virol chickle | 1.85E+02 | 15 | 62,78
52,78 | LS | 10 | | | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | 6 | 6 | 78 | 2.5 | 8760 | | 1330207 | XVeres | 1,975,772 | 15 | 52.78 | LS
LS | 10 | LS
LS | -} | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | סי | - 6 | 6 | 78 | 2.5 | 8750 | | 1330207
98662
91203 | Acetophenone | | 16 | 52.78 | LS | 10 | LS | | 1.5 | 0.43 | 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.0E-06 | 1 | 70
70 | <u> </u> | 6 | 78 | 2.5 | 8750
8750 | | 91203 | Nephthelene | 9,09E+00 | 15 | 62.78 | ĻS | 10 | LS. | 1 | 1.5 | 0.43 | 7.3 | 1.06-06 | + + | 70 | <u> </u> | 6 | 78
78 | 2.5 | 8780 | | 91576
92524 | Matrylnaphthalone, 2- | 6.89E+00 | 15 | 62.78 | | 10 | LS. | 7 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | A | ************************************** | (°
78 | 2.5 | 8780 | | 208968 | Bipharyi, 1,1'- | | 15 | 62,78 | L8 | 10 | L\$ | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | ě | 6 | 78 | 2 5 | 8760 | | 83329 | Acementativiana | | 15 | 62,7ê | | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 105-06 | 1 | 70 | , š | 6 | 78 | 2.5 | B750 | | 83329
86737
85016 | Acenari-there
Fluorene | | 15
15 | 52.70 | LS
US | 10 | L <u>s</u> | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | Б | 6 | 78 | 2.5 | 8750 | | 65016 | Phenantycene | 5.74E+00 | 16 | 62.78
62.78 | LS
LS | 10 | <u>us</u> | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | Б | . 6 | 76 | 2.5 | 8760 | | 120127 | Anthrecene | | 16 | 62.76 | LS | 10 | <u> </u> | | 1,5 | 0.43 | 0.3 | 1.0E-06
1.0E-08 | 1 | 70 | | - 5 | 78 | 2.5 | 8750 | | CS-C18 | C9-C18 Allphades | 7,51E+02 | 15 | 62.78 | LS | _ 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1,06-06 | 1 | 70 | <u> </u> | <u> </u> | 78
78 | 2.5
2.5 | 8760
8760 | | C11-C22 | C11-C22 Aromatica | 4.19E+02 | 15 | 62.78 | LS | 10 | L8 | 1 | 1,5 | 0.43 | 0.3 | 1.0E-06 | - i | 70 | 8 | | 78 | 2.5 | 8760 | | CS.C10 | CS-CS Altohatics
CS-C10 Aromatics | 1,15E+02
7,16E+01 | 15 | 62.76 | LS | 30 | LS | 1 | 1,6 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | 6 | 7.9 | 2.5 | 8760 | | C5-C8
C9-C10
C9-C12 | C9-C10 Aromatics | 7.186+01
3.30E+01 | 15
16 | 52.76
52.78 | LS
LS | 10 | <u>IS</u> | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 5 | 6 | 7ê | 2.5 | 8780 | Note: 1) Default and perameters from table 7 of User's Guide for Evaluating Subsurface Vapor Intrusion into Building (U.S. EPA June 19, 2003) were used for soil water filled perceity (S₁), and organic carbon facility (S₁), and local porceity (A₁), and each dry bulk density (S₂). Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - RME Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Murphy Waste Oil | 1 | | | | | | | | | | | | ļ | |----------|-------------------------------------|----------------------|----------------------|--------------|--------------|------------------|----------------|----------------|---------------------------------------|-------------|--------------------|----------------------| | (| | | | Henry's | Henry's | Enthalpy of | | | Organic | Pure | | 1 | | | | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | | | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | ŀ | | in air, | in water, | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | | Chemical | | D_a | D _w | Н | TR | $\Delta H_{v,b}$ | Τ _B | T _C | K _{oc} | S | URF | RfC | | CAS No. | Chemical | (cm ² /s) | (cm ² /s) | (atm-m³/mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | | | | | | ··· | | · · · · · · · · · · · · · · · · · · · | \g = / | | | | 71556 | 1,1,1-Trichloroethane | 7,80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7.136 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | | 76131 | Trichloro-1,2,2-triflouroethane, 1, | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1.326 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | 79005 | 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 | 9.12E-04 | 25 | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | 95501 | 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | 541731 | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-08 | 4.70E-03 | 25 | 1,242 | 446.00 | 683,96 | 1.70E+02 | 6.88E+01 | N/A | N/A | | 106467 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6,955 | 329.20 | 508.10 | 5.75E-01 | 1,00E+06 | N/A | N/A | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5,56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8,410_ | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50€-06 | 8.67E-03 | 25 | 1,355 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | 67663 | Chloroform | 1.04E-01 | 1,00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0 E- 02 | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333.65 | 544.00 | 3,55E+01 | 3.50E+03 | N/A | 2.0E-01 | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353.85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | | 100414 | Ethylbenzene | 7,50E-02 | 7,80E-06 | 7.88E-03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0€+00 | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,259 | 425.40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | | 108872 | Methyl cyclohexane | 9.86€-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,324 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1,84E-02 | 25 | 8,288 | 394,40 | 620.20 | 1,55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7,930 | 383,78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1,333 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1,10E+03 | N/A | 4.0E-02 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86€+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | | 1330207 | Xylenes | 7,69E-02 | 8,44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | 98862 | Acetophenone | 6.00E-02 | 8.73E-06 | 1,02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | 91576 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | 92524 | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 |
1,149 | 529,10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | 208968 | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 12,155 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9,41E-08 | 25 | 12,666 | 570,44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | 120127 | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA_ | NA NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA. | NA NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA | NA | NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA | NA |] NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | Appendix C.4 Johnson & Ettinger Model - Calculations Screen Inhalation of Votation from Groundwater Future Child Representationed Science - RME Southwest Princip, Wallis G&H Superfund SHe, Operable Link 2 Murphy Waste Cil | | Source-
building
separation, | Verious
zone soil
ak-filled
porosky,
e, ^V | Vadose zone
effective
total fluid
saturation,
B _m | Vadose zone
soil
intrinsic
permeability,
k, | Varione zone
soli
relative air
permeability,
k _m | Vadose zone
soil
effective vapor
permeability,
k, | Thickness of capillary zone, | Total
perosity in
capitary
zone, | Air-filled porosity in
capitlery
zone,
the capitle of the capit | Winter-filled
porosity in
capitary
zone,
0 _{mm} | Floor
wall
seem
perimeter,
Xarack | Skig.
veniliation
rele. | Area of enclosed apace below grade, | Crack-
to-total
area
ratio, | Grack
depth
below
grade, | Enthalpy of
vaporization at
ave. groundwater
lemperature, | Henry's law
constant at
eve. groundwater
temperature, | lemperature, | |--|------------------------------------|--|--|---|---|---|------------------------------|---|--|--|---|-------------------------------|-------------------------------------|--------------------------------------|-----------------------------------|--|--|----------------------| | | (cm) | (cm²/cm²) | (om³/cm³) | (cm²) | (cm²) | (em ³) | (em) | (cm²/sm²) | (au ₂ /au ₂) | (cm²/cm²) | | (GTI ³ /8) | ~g | η | Zora | AHL, TE | Hra | H ₇₈ | | | | | | | 74 / | | - jenij | (GII ZGII) | (un /un) | (cm /cm) | (cm) | (cm/#) | (cm²) | (unitiess) | (cm) | (cal/mol) | (atm-m³/mol) | (unitiess) | | 71556 1,1,1-Trichlorcethene | 47.78 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 16.75 | 0.43 | | | | | | | | | | | | 76131 Trichkro-1,2,2-triflourcethane, 1,1,2- | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | D. 127 | 0.303 | 6.55E+03 | | | 2.48E-04 | 15 | 7.885 | 8.50E-03 | 3.66E-01 | | 79005 1,1,2-Trichloroethene | 47.78 | 0,130 | 0,659 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 8.55E+03 | 6.93E+06 | 2.60E+06 | 2.45E-04 | 15 | 1,436 | 4.556-01 | 1.96E+01 | | 75343 1,1-Dichloroethene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6,93€+05 | | 2.48E-04 | 15 | 9,672 | 3,88E,-04 | 1.67E-02 | | 75354 1,1-Dichloroethylene | 47.78 | D,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7,450 | 2.88E-03 | 1.24E-01 | | 120521 1,2,4-Trichlorobenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 6,392 | 1.47E-02 | 6.34E-01 | | 95501 1,2-Dichlorobenzene | 47.78 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | | 2.60E+06 | 2.48E-Q4 | 15 | 13,230 | 4.35E-04 | 1.87E-02 | | 541731 Dichlorobenzene, 1,3- | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 6.93E+05 | 2.60E+06 | Z.48E-04 | 15 | 1,521 | 1.41E-06 | 6.09E-05 | | 106467 1,4-Dichlorobenzene | 47,78 | 0,130 | 0.659 | 1.62E-06 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,503 | 4.11E-03 | 1.77E-01 | | 78933 Butanone, 2- (MEK) | 47.70 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 0.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05
6.93E+05 | 2.60E+06
2.60E+06 | 2.48€-04 | 15 | 11,243 | 8.89E-04 | 3.83E-02 | | 67641 Acetone | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | | | 2.48E-04 | 15 | 1,486 | 4,90E-05 | 2.11E-03 | | 71432 Benzane | 47.76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | 0.303 | 6.55E+03 | | 2.60E+05 | 2.48E-04 | 15 | 7,559 | 1.97E-05 | 8.50E-04 | | 74839 Bromomethane | 47,78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | | 2.60E+06 | 2.48E-04 | 15 | 8,122 | 2.69E-03 | 1.18E-01 | | 75150 Carbon Disuffice | 47.7B | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | | 2.60E+06
2.60E+06 | 2.48E-04 | 15 | 1,337 | 5.52E-03 | 2.38E-01 | | 108907 Chlorobenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | | | 2.48E-04 | 15 | 6,682 | 6.99E-03 | 3.01E-01 | | 75003 Ethyl Chloride | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 9,803 | 1.54E-03 | 6.65E-02 | | 67663 Chloroform | 47,78 | 0.130 | 0.659 | 1.62E-08 | D.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6 93E+05 | 2,60E+06 | 2.48E-04 | 15 | 1,201 | 7,79E-03 | 3.35E-01 | | 156592 cie-1,2-Dichioroethylene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 6 93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7,554 | 1.86E-03 | 8.02E-02 | | 110827 Cyclohexane | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 15.75 | 0.43 | 0.127 | 0.303 | | 6.93E+0.5 | 2.60E+06 | 2.48E-04 | 15 | 7,734 | 2.04E-03 | 8.77E-02 | | 100414 Ethylbenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+08 | 2.48E-04 | 15 | 1,486 | 1.75E+00 | 7.54E+01 | | 95528 leopropylbenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 10,155 | 3.18E-03 | 1.37E-01 | | 108872 Methyl cyclohexane | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 8.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,540 | 1.28E-02 | 5.51E-01 | | 1634044 Methyl-Terlary-Butyl Ether | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 6.93E+05
 2.60E+06 | 2.48E-04 | 15 | 1,505 | 3.70E-01 | 1.59E+01 | | 75092 Methylene phloride | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2,60E+06 | 2.48E-04 | . 15 | 1,447 | 5.16E-04 | 2.22E-02 | | 127184 Tetrachloroethylene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7,034 | 1.17E-03 | 5.03E-02 | | 108883 Toluene | 47.78 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6 33F-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.50E+06 | 2.48E-04 | 15 | 9,553 | 7.83E-03 | 3.37E-01 | | 156605 trans-1,2-Dichloroethylane | 47,78 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 6.93E+05 | 2.50E+06 | 2.48E-04 | 15 | 9,154 | 2,92E-03 | 1.26E-01 | | 79016 Trichkmathylene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.56E+03 | 6,93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,417 | 6,27E-03 | 3.56E-01 | | 75014 Vinyl chloride | 47.7B | 0.130 | 0 659 | 1.62E-08 | 0.330 | 6,33E-09 | 15.75 | 0.43 | 0.127 | 0.303
D.303 | 6.55E+03
6.55E+03 | 6,93E+06 | 2.60E+08 | 2.48E-04 | 15 | 8,557 | 4,79E-03 | 2.06E-01 | | 1330207 Xylenee | 47.76 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 5,000 | 1.73E-02 | 7.46E-01 | | 96562 Acelophenone | 47.7B | 0,130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | | 2.60E+06 | 2.48E-Q4 | 15 | 1,542 | 5.86E-06 | 2.52E-04 | | 91203 Naphthelene | 47,78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 6.93E+05 | 2.60E+06 | 2,48E-04 | 15 | 1,518 | 8,91E-06 | 3.83E-04 | | 91876 Methylmaphthalene, 2- | 47,78 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | 0.303 | 6.55€+03
6.55E+03 | 6.93E+05 | 2,60E+06 | 2.48E-04 | 15 | 12,913 | 1,52E-04 | 5.55E-03 | | 92524 Biphenyl, 1,1'- | 47.78 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 5 33F-09 | 16.75 | 0.43 | 0.127 | 0.303 | | 6.93E+05 | | 2.48E-04 | 15 | 1,508 | 8.86E-04 | 3.81E-02 | | 208958 Acenaphthylene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33£-09 | 18.75 | 0.43 | 0.127 | 0.303 | 0.335+03 | 6.93E+05 | 2.60E+06 | 2.45E-04 | 15 | 1,472 | 2.65E-04 | 1.14E-02 | | E3329 Acenaphthene | 47.78 | 0.130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | | 2.48E-04 | 15 | 1,513 | 2.45E-04 | 1.05E-02 | | 85737 Fluorene | 47.78 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | | 0.50E+03 | 8.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 16,123 | 3.67E-05 | 1,58E-03 | | 85018 Phenanitrana | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | | 2.50€+05 | 2.46E-04 | 15 | 16,235 | 2,20E-08 | 9.48E-07 | | 120127 Antiracana | 47.78 | 0,130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | | 2.60E+06 | 2.48E-04 | 15 | 1,479 | 1,14E-04 | 4.906-03 | | C9-C18 C9-C18 Aliphatics | 47.78 | 0.130 | 0.659 | 1.625-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | | 2.80E+06 | Z45E-04 | 15 | 18,353 | 1,26E-05 | 5.43E-04 | | C11-G22 C11-C22 Arometice | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | | 2.60E+06 | 2.48E-04 | 15 | NA I | 8.28E-01 | 3.56E+01 | | C5-C8 C5-C8 Aliphatics | 47.78 | D.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 10.75 | 0.43 | 0.127 | | 6.56E+03 | 6.93E+05 | 2.60E+05 | 2.48E-04 | 15 | , NA | 3.60E-04 | 1.55E-02 | | C9-C10 C9-C10 Aromatica | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | NA I | 6.48E-01 | 2.79E+01 | | C9-C12 C9-C12 Aliphatics | 47 78 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 5.93E+05
6.93E+05 | 2.60E+06 | 2.48E-04
2.48E-04 | 15 | NA
NA | 3.96E-03
7.80E-01 | 1.70E-01
3.35E+01 | Appendix C.4 Johnson & Ettinger Model - Celculations Screen Inhalation of Volatilae from Groundwater Futuse Child Recreational Scanario - RME Southwest Proeties, Wells G&H Superfund Ste. OperMurchy Weste Oil | | Vapor
viscoelty at
eve, soil
temperature,
Pra
(g/cm-s) | Vadose zone effective diffusion coefficient, D***, (cm²/s) | Capillary zone effective diffusion coefficient, Offi _{er} (om ² /s) | Total overell effective diffusion coefficient, D ^{eff} (om ² /s) | Ciffusion
path
langth,
L ₂
(cm) | Convection
path
length,
L _a | Source
vapor
conc.,
C _{harre}
(µg/m³) | Crack
radius.
fores.
(cm) | Average
vapor
flow rate
into bidg .
Q _{upt}
(cm ³ /s) | Grack effective diffusion coefficient, D ^{ereck} (cm ² /s) | Area of
creck,
A _{rea}
(cm ²) | Exponent of
eauty dent
foundation
Paciet
number,
exp(Pe ¹)
(unities) | Infinite source indoor alternuction coefficient, or (untileas) | infinite
source
bidg.
conc.,
C _{hamin}
(up/m ³) | Unit
risk
factor,
URF
(ug/m ¹) ⁻¹ | Reference
conc.
RfC
(mg/m²) | |---|---|--|---|--|--|---|--|------------------------------------|--|--|---|--|--|---|--|--------------------------------------| | | (g/cm-a) | (cm /s) | (CIT (II) | (Orti 74) | (cm) | (cm) | (Japan) | (om) | (511,71) | from var) | <u> </u> | (Urriness) | (Orange) | (page-11) | (Japon) | (| | 71556 1.1.1-Trichkorosthene | 1,75E-04 | 4.75E-04 | 4.45E-04 | 4.63E-04 | 47.78 | 15 | 193E+04 | 0.10 | 1.04E+01 | 4 75E-04 | 6.45E+02 | 9.58E+220 | 1,06E-05 | 2.05E-01 | N/A | 2.2E400 | | 76131 Trichloro-1,2,2-triflouroethene, 1,1,2- | 1.75E-04 | 1,75E-04 | 1.63E-04 | 1.70E-04 | 47.78 | 15 | N/A | 0.10 | 1045+011 | 1,75E-04 | 6.45E+02 | #NUM | 7.06E-08 | N/A | N/A | 3.0E+01 | | 7905 1.1.2-Trichlorosthans | 1.75E-04 | 5.24E-04 | 4.95E-04 | 5.13E-04 | 47.78 | 15 | N/A | 0.10 | 1.04E+01 | 5 24E 04 | 6.45E+02 | 1.44E+200 | 1.09E-05 | N/A | 1.6E-05 | 2.2E+00 | | 75343 1,1-Dichloroethane | 1.75E-04 | 4.58E-04 | 4.29E-04 | 4.46E-04 | 47.78 | 15 | 8.97E+03 | 0.10 | 1.04E+01 | 4 58E-04 | 6.45E+02 | 1.67E+229 | 1.05E-05 | 8.43E-02 | N/A | 5 0E-01 | | 75354 1,1-Dichloroethylune | 1.75E-04 | 5.47E-04 | 5.12E-04 | 5.33E-04 | 47.78 | 15 | 5.71E+03 | 0.10 | 1.04E+01 | 5.47E-04 | 6.45E+02 | 8.08E+191 | 1 10E-05 | 6.30E-02 | N/A | 2.0E-01 | | 120821 1.2.4-Trichlorobenzene | 1.75E-04 | 2.25E-04 | 2.14E-04 | 2.21E-04 | 47.78 | 15 | N/A | 0.10 | 104E+01 | 2 25E-04 | 6.45E+02 | MUM | 8.04E-05 | N/A | N/A | 2.0E-01 | | 95501 1.2-Dichlorobenzene | 1.75E-04 | 1.58E-02 | 1.60E-02 | 1.50E-02 | 47.78 | 15 | 6.09E-02 | 0.10 | 1.04E+01 | 1.56E-02 | 6.45E+02 | 5.40E+06 | 1.48E-05 | 9.02E-07 | N/A | N/A | | 541731 Dichlorobenzene, 1.3- | 1.75E-04 | 2.56E-04 | 2.40E-04 | 2 49E-04 | 47.78 | 15 | N/A | 0.10 | 104E+01 | 2.56E-04 | 6.45E+02 | MUM | 6.49E-06 | N/A | N/A | N/A | | 106467 1.4-Dichlorobertzene | 1.75E-04 | 4.38E-04 | 4.12E-04 | 4.28E-04 | 47.78 | 15 | NA | 0.10 | 1.04E+01 | 4.38E-04 | 6.45E+02 | 2 83E+239 | 1.04F-05 | N/A | N/A | 5.0E-01 | | 76933 Butanone, 2- (MEK) | 1.75E-04 | 9.45E-04 | 9.27E-04 | 9 30E-04 | 47.75 | 15 | N/A | 0 10 | 1.04E+01 | 9.45E-04 | 6.45E+02 | 1.09E+111 | 1.25E-05 | N/A | N/A | N/A | | 67641 Acetone | 1.75E-04 | 2.07E-03 | 2.06E-03 | 2.06E-03 | 47.78 | 15 | 2.06E+01 | 0 10 | 1.04E+01 | 2.07E-03 | 6.45E+02 | 5.63E+50 | 1.37E-05 | 2.83E-04 | N/A | N/A | | 71432 Benzere | 1.75E-04 | 5.42E-04 | 5.07E-04 | 5.28E-04 | 47.78 | 15 | 7.57E+02 | 0 10 | 1.04E+01 | 5.42E-04 | 6.45E+02 | 6.73E+193 | 1.10E-05 | 8.34E-03 | 7.8E-06 | 3.0E-02 | | 74839 Bromomethene | 1.75E-04 | 5.42E-04
4.46E-04 | 4.18E-04 | 4.35E-04 | 47.78 | 15 | 2.38E+02 | 0 10 | 1.04E+01 | 4.48E-04 | 6 45E+02 | 1.91E+235 | 1.04E-05 | 2.47E-03 | N/A | 5.0E-03 | | | 1.75E-04 | | | 6.18E-04 | 47.78 | 15 | 2.30E+V2 | 0.10 | 1.04E+01 | 6.34E-04 | 6.45E+02 | | 1.15E-05 | N/A | N/A | 7.0E-01 | | 75150 Cerbon Disuffide | 1,75E-04 | 6.34E-04
4.55E-04 | 5 94E-04
4 27E-04 | 4.44E-04 | | | 6.65E+01 | 0.10 | 1.04E+01 | 4.55E-04 | 6.45E+02 | | 1.05E-05 | 6.97E-04 | N/A | 6.0E-02 | | 106907 Chlorobenzene | | | | 7.45E-04 | 47,78 | 15 | 1.02E+04 | 0.10 | 1.04E+01 | 7.56E-04 | 6.45E+02 | | 1.19E-05 | 1.22E-01 | N/A | 1.0E+01 | | 75003 Ethyl Chloride | 1.75E-04 | 7.86E-04 | 7.16E-04 | | 47.78 | 15 | | | 1.04E+01 | | 6.45E+02 | | 1.15E-05 | N/A | 2.3E-05 | 5.0E-02 | | 67663 Chloroform | 1.75E-04 | 6.43E-04 | 6.02E-04 | 6.26E-04 | 47,76 | 15 | N/A | Q. 10 | 1.04E+01 | 6.43E-04 | | 2.45E+163
7.49E+228 | 1.05E-05 | 6.65E-01 | N/A | 2.0E-01 | | 156592 cis-1,2-Dichloroethylene | 1.75E-04 | 4.59E-04 | 4.30E-04 | 4.47E-04 | 47.76 | 15 | 6.52E+04 | 0.10 | | 4.59E-04 | 6.45E+02 | | | N/A | | #N/A | | 110827 Cyclohexane | 1.75E-04 | 4.85E-04 | 4.53E-04 | 4.72E-04 | 47.78 | 15 | N/A | 0.10 | 1,04E+01 | 4.85E-04 | 6.45E+02 | 3.37E+216 | 1.07E-05 | |
#N/A | | | 100414 Ethylsenzene | 1.75E-04 | 4.60E-04 | 4.31E-04 | 4.48E-04 | 47,70 | 15 | 1.04E+03 | 0,10 | 1.04E+01 | 4.60E-04 | 6.45E+02 | 1.44E+228 | 1.05E-05 | 1 09E-02 | N/A | 1.0E+00 | | 98828 Isopropylbenzene | 1.75E-04 | 3.95E-04 | 3.70E-04 | 3,65E-04 | 47.78 | 15 | N/A | 0.10 | 1.04E+01 | 3.95E-04 | 6.45E+02 | 3.75E+265 | 1.00E-05 | N/A | N/A | 4.DE-D1 | | 108872 Methyl cyclohesane | 1.75E-04 | 5.98E-04 | 5.59E-04 | 5.52E-04 | 47.78 | 15 | 1.11E+05 | 0.10 | 1.04E+01 | 5,98E-04 | 6.45E+02 | 4.68E+175 | 1.13E-05 | 1.26E+00 | N/A | 3.0E+00 | | 1634044 Methyl-Yerttery-Butyl Ether | 1.75E-04 | 6.67E-04 | 6.28E-04 | 6.51E-04 | 47.78 | 15 | N/A | 0,10 | 1.04E+01 | 6.67E-04 | 6,45E+02 | 2.47E+157 | 1,16E-05 | N/A | N/A | 3.0E+00 | | 75092 Methylene chlonde | 1.75E-04 | 6.35E-04 | 5.96E-04 | 6.19E-04 | 47.78 | t5 | 7.98E+02 | 0.10 | 1.04E+01 | 8,35E-04 | 6,45E+02 | 2.18E+165 | 1 15E-05 | 9.14E-03 | 4.7E-07 | | | 127184 Tetrachicrosthylene | 1 75E-04 | 4.39E-04 | 4.116-04 | 4.27E-04 | 47.78 | 15 | 2.36E+03 | 0.10 | 1.04E+01 | 4.39E-04 | 6.45E+02 | 1.92E+239 | 1 04E-05 | 2.45E-02 | 5.9E-06 | | | 108683 Toluene | 1 75E-04 | 5.34E-04 | 5.00E-04 | 5.20E-04 | 47,78 | 15 | 2.16E+03 | 0.10 | 1.04E+01 | 5.34E-04 | 6.45E+02 | 4.07E+196 | | 2.37E-02 | N/A | 4 0E-01 | | 156605 trans-1,2-Dichloroethylene | 1.75E-04 | 4.32E-04 | 4.04E-04 | 4.20E-04 | 47,78 | 15 | 4.55E+03 | D.10 | 1.04E+01 | 4.32E-04 | 6.45E+02 | 1.43E+243 | 1.03E-05 | 4.69E-02 | NVA | 2.0E-01 | | 79016 Trichloroethylene | 1.75E-04 | 4.83E-04 | 4,52E-04 | 4.70E-04 | 47,76 | 15 | 6 B3E+03 | D.1D | 1.04E+01 | 4.63E-04 | B.45E,+02 | 2.03E+217 | 1.07E-05 | 7.28E-02 | N/A | 4.0E-02 | | 75014 Virryl chloride | 1.75E-04 | 6.44E-04 | 6,02E-04 | 6.27E-04 | 47,75 | 15 | 1 38E+05 | D.10 | 5.04E+01 | 6.44E-04 | B.45E+02 | 1.02E+163 | 1.15E-05 | 1.59E+00 | 0.6E-06 | | | 1330207 Xylenes | 1.75E-04 | 3.76E-03 | 3.81E-03 | 3,77E-03 | 47.78 | 15 | N/A | 0.10 | 1.D4E+01 | 3 75E-03 | 6.45E+02 | 1.01E+28 | 1.43E-05 | NA | N/A | 1.0E-01 | | 98882 Acetophenone | 1.75E-04 | 2.60E-03 | 2.64E-03 | 2.62E-03 | 47.78 | 15 | N/A | 0.10 | 1 04E+01 | 2.60E-03 | 6.45E+02 | 2.48E+40 | 1.40E-05 | NA | N/A | N/A | | 91203 Naphthalene | 1.75E-04 | 4.702-04 | 4.50E-04 | 4.62E-04 | 47,78 | 15 | 5.96E+01 | 0.10 | 1.04E+01 | 4.70E-04 | 6,45E+02 | 2.56E+223 | 1.06E-05 | B.32E-04 | N/A | 3.0E-03 | | 91576 Methylnaphthalene, 2- | 1.75E-04 | 3.135-04 | 2.95E-04 | 3.06E-04 | 47.78 | 15 | 2.24E+02 | 0.10 | 1.04E+01 | 3.13E-04 | 6.45E+02 | #NUM | 9.23E-06 | 2 07E-03 | N/A | 3.0E-03 | | 92524 Blohenyl, 1,1- | 1.75E-04 | 3 15E-04 | 3.01E-04 | 3.09E-04 | 47,78 | 15 | N/A | 0.10 | 1 04E+01 | 3.15E-04 | 6.45E+02 | #NUM! | 9.27E-06 | N/A | N/A | N/A | | 208968 Acenaphthylene | 1.75E-04 | 3.38E-04 | 3.22E-04 | 3.31E-04 | 47.78 | 15 | N/A | 0 10 | 1 04E+01 | J.38E-04 | 6.45E+02 | MUMI | 9.51E-06 | NA | N/A | 3.0E-03 | | 83329 Acenephthene | 1.75E-04 | 7.33E-04 | 7.31E-04 | 7.32E-04 | 47,78 | 15 | N/A | 0 10 | 1 04E+01 | 7,33E-04 | 6 45E+02 | 1.38E+143 | 1.19E-05 | NA | N/A | 3.0E-03 | | 88737 Flucrene | 1.75E-04 | 8.16E-01 | 8.39E-01 | 0.25E-01 | 47.78 | 15 | N/A | 0.10 | 1.045+01 | 8.16E-01 | 6.45E+02 | | 5.84E-05 | N/A | IVA | 3.0E-03 | | \$5018 Phenanthrene | 1.75E-04 | 3.50E-04 | 3.41E-04 | 3.46E-04 | 47,78 | 15 | 2.81E+01 | 0.10 | 1.04E+01 | 3.50E-04 | 6.45E+02 | | 9.56E-06 | 2 72E-04 | N/A | 3.0E-03 | | 120127 Anthracene | 1.75E-04 | 1.60E-03 | 1.62E-03 | 1.616-03 | 47,7B | 15 | N/A. | 0.10 | 1.04E+01 | 1.60E-03 | | 6.32E+65 | 1.34E-05 | N/A | N/A | 3.0E-03 | | C9-C18 C9-C16 Alighatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.548-04 | 47,76 | 15 | 3.39E+07 | 0.10 | 1.04E+01 | 3.64E-04 | | 4.88E+268 | 9.74E-06 | 3.30E+02 | N/A | 2 0E-01 | | C11-C22 C11-C22 Aromatica | 1.75E-04 | 4.27E-04 | 4.05E-04 | 4.18E-04 | 47.76 | 15 | 6.49E+03 | 0.10 | 1.04E+01 | 4.27E-04 | | 7.52E+245 | 1,03E-05 | 6.68E-02 | N/A | 5.0E-02 | | C6-C8 C5-C8 Alighetics | 1,75E-04 | 3.64E-04 | 3.40E-04 | 3.54E-04 | 47,78 | 15 | 3.22E+05 | 0.10 | 1.04E+01 | 3.64E-04 | 6.45E+02 | | 9.74E-06 | 3.14E+01 | N/A | 2.0E-01 | | C9-C10 C9-C10 Aromatics | 1.75E-04 | 3.69E-04 | 3.46E-04 | 3.60E-04 | 47.78 | 15 | 1,22E+04 | 0.10 | 1.04E+01 | 3.69E-04 | 6.45E+02 | 1.62E+284 | 9.60E-06 | 1.20E-01 | N/A | 5.0E-02 | | C9-C12 C9-C12 Aliphatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.54E-04 | 47.76 | 15 | 1.11E+06 | 0.10 | 1.04E+01 | 3.64E-04 | 6.15F+02 | 4.57E+200 | 9.74E-06 | 1.085.+01 | N/A | 2.0E-01 | (- Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Votatiles from Groundwater [Future Child Recreational Scenario - RME Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Murphy Waste Oil ### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: ### INCREMENTAL RISK CALCULATIONS: Incremental Hazard | | | Indoor exposure groundwater conc., carcinogen (µg/L) | indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure
component
water
solubility,
S
(µg/L) | Final indoor exposure groundwater conc., (µg/L) | |------------------|---|--|--|---|--|---| | 71556 | 1.1.1-Trichloroethane | NA NA | l NA | NA. | 1.33E+06 | NA | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA NA | NA. | NA. | 1.70E+05 | NA. | | 79005 | 1,1,2-Trichloroethane | NA NA | NA NA | NA. | 4.42E+06 | NA | | 75343 | 1,1-Dichloroethane | NA NA | NA
NA | NA
NA | 5.06E+06 | NA. | | 75354
75354 | 1,1-Dichloroethylene | NA NA | NA
NA | NA
NA | 2.25E+06 | NA | | 20821 | 1.2.4-Trichlorobenzene | NA NA | NA. | NA NA | 3.00E+05 | NA | | 12002 I
95501 | 1.2-Dichlorobenzene | NA NA | NA
NA | NA
NA | 2.77E+07 | NA. | | 541731 | Dichlorobenzene, 1,3- | NA NA | NA NA | NA
NA | 6.88E+04 | NA. | | | | | | NA
NA | 7.38E+04 | NA NA | | 106467 | 1,4-Dichlorobenzene | NA NA | NA
NA | | 2.23E+08 | NA. | | 78933 | Butanone, 2- (MEK) | NA NA | NA NA | NA. | 1.00E+09 | NA NA | | 37 64 1 | Acetone | NA NA | NA NA | NA. | 1.75E+06 | NA
NA | | 71432 | Benzene | NA
NA | NA
NA | NA
NA | 1.75E+07 | NA
NA | | 4839 | Bromomethane | NA | NA | NA NA | 2.67E+06 | NA. | | 75150 | Carbon Disulfide | NA NA | NA . | NA NA | 4.72E+05 | NA NA | | 08907 | Chlorobenzene | NA NA | NA | NA | 5.32E+06 | NA NA | | 5003 | Ethyl Chloride | NA
NA | NA | NA | 7.92E+06 | NA
NA | | 7663 | Chloroform | NA NA | NA NA | NA | 3.50E+06 | NA
NA | | 56592 | cis-1,2-Dichioroethylene | NA NA | NA NA | NA | | NA NA | | 10827 | Cyclohexane | NA NA | NA NA | NA | 5.50E+04
1.69E+05 | NA
NA | | 00414 | Ethylbenzene | NA NA | NA . | NA . | 5.60E+04 | NA
NA | | 8828 | sopropylbenzene | NA NA | NA NA | NA | | NA
NA | | 08872 | Methyl cyclohexane | NA | NA NA | NA NA | 1.40E+04 | | | 634044 | Methyl-Tertiary-Butyl Ether | NA NA | NA | NA NA | 5.10E+07 | NA NA | | 5092 | Methylene chloride | NA NA | NA NA | NA | 1.30E+07 | NA | | 27184 | Tetrachloroethylene | NA | NA NA | NA NA | 2.00E+05 | NA. | | 08883 | Totuene | NA NA | NA NA | NA. | 5.26E+05 | NA | | 56605 | trans-1,2-Dichloroethylene | NA NA | NA. | NA | 6.30E+06 | NA | | 9016 | Trichloroethylene | NA NA | NA | NA | 1.10E+06 | NA NA | | 5014 | Vinyl chloride | NA NA | NA. | NA NA | 2.76E+06 | NA | | 330207 | Xylenes | NA NA | NA | NA | 2,20E+05 | NA NA | | 8862 | Acetophenone | NA NA | NA NA | NA | 6,13E+06 | NA | | 1203 | Naphthalene | NA NA | NA NA | NA | 3.10E+04 | NA | | 1576 | Methylnaphthalene, 2- | NA NA | NA | NA | 2.46E+04 | NA | | 2524 | Biphenyl, 1,1'- | NA NA | NA NA | NA | 6.94E+03 | NA | | 83680 | Acenaphthylene | NA NA | NA | NA | 3.93E+03 | NA | | 3329 | Acenaphthene | NA NA | NA | NA | 4.24E+03 | NA | | 6737 | Fluorene | NA NA | NA NA | NA | 1.90E+03 | NA | | 5018 | Phenanthrene | NA NA | NA | NA NA | 1.28E+03 | NA | | 20127 | Anthracene | NA | NA NA | NA . | 4.34E+01 | NA | | 9-C18 | C9-C18 Aliphatics | NA NA | NA | NA | 1.00E+D4 | NA. | | 11-C22 | C11-C22 Aromatics | NA NA | NA NA | NA. | 5.80E+06 | NA NA | | C5-CB | C5-CB Aliphatics | NA | NA . | NA | 1.10E+07 | NA | | C9-C10 | C9-C10 Aromatics | NA NA | NA NA | NA | 5.10E+07 | NA NA | | C9-C12 | C9-C12 Aliphatics | NA | NA NA | NA | 7.00E+04 | NA | | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air. | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | NA NA | 2.1E-06 | | NA
NA | NA NA | | NA
NA | NA
NA | | | | | NA NA | 4.2E-06 | | NA NA | 7.0E-06 | | NA
 | NA . | | NA NA | NA | | NA NA | NA . | | NA . | ŅA | | NA NA | NA . | | NA | NA NA | | 1.2E-10 | 6.2E-06 | | NA NA | 1.1E-05 | | NA . | NA | | NA | 2.6E-07 | | NA NA | 2.7E-07 | | NA | NA NA | | NA NA | 7.6E-05 | | NA NA | NA | | NA | 2.4E-07 | | NA . | NA | | NA | 9.3E-06 | | NA NA | NA NA | | 8.2E-12 | 6.8E-08 | | 2.8E-10 | NA NA | | NA NA | 1.3E-06 | | NA | 5.2E-06 | | NA | 4.1E-05 | | 2.7E-08 | 3.5E-04 | | . NA | · NA | | NA | NA | | NA NA | 4.7E-06 | | NA NA | 1.5E-05 | | NA NA | NA | | NA | NA . | | NA NA | NA | | NA NA | NA | | NA . | 2.0E-06 | | NA NA | NA | | NA | 3.7E-02 | | NA | 3.0E-05 | | NA | 3.5E-03 | | NA. | 5.3E-05 | | NA | 1.2E-03 | | | | | | 95% UCL | | | |--------|---------|---------------|---------| | | Cancer | 95% UCL | | | | Risk | HI | _ | | TOTAL: | 3E-08 | 4E-02 |] | | _ | | | = | | | | = Cancer risk | > 1E-05 | | _ | • | or HQ/HI>1E | ⊦00 | END | Inhalation of Volation
Future Child Recrea | Model - Data Entry Screen
se from Groundwater
atonal Scenario - CT
s. Wells GSH Superfund She, Operable | Unit 2 | | | | | | | . | , | | | | | | | | | |
---|--|---------------------------|----------------------------------|----------------------|--------------------|---------------------|--|---|---------------------------------------|---------------------------|----------------------------------|----------------------|--|----------------------|-----------------------------|-----------------------|------------------------|---------------------|---------------------| | CALCULAYE RUSK | BASED GROUNDWATER CONCENT | FRATION (enter "X" in "YE | ES* box) | | | | | | | | | | | | | | | | | | | YE3 | CALCULATE INGR | OR
REMENTAL RUSKS FROM ACTUAL GR | OUNDWATER CONCEN | NTRATION | | | | | | | | | | | | | | | | | | (enter "X" in "YES" | box and initial croundwater conc. below) | YES X | | ENTER
Depth | ENTER | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | ENTER | | ENTER | below grade | | | Average | Vadose zone | Lieer-defined | ENTER | Chemical | | 95% UCL
aroundwater | in bottom
of enciosed | Deoth
below grade | SC5 | orandwater
tall | SCS
eoil type | vadose zone
soil vapor | Vadose zone
soil dry | Vadosa zone
soil total | Vacces zone
soil water-(illed | Torport
right for | Terget hazerd
outsitent for | Averaging
breator | Averaging | | | | | | CAS No.
(numbers only, | | conc., | space Roor, | to water table. | eoil (vpe | temperature, | (used to estimate | OR permeability, | bulk density, | porosity, | porosity, | carcinogens, | noncarcinogena. | carcinogens, | time for
noncarcinogens, | Exposure
duration, | Exposure
frequency, | factoriums
tinve | Coversion
factor | | no dimber | Chemical | رسي.
(سي⊄ر) | L _e
(15 or 200 cm) | LWT
(cm) | directly above | T.
("C) | eall yepar | Note (om²) | , , , , , , , , , , , , , , , , , , , | , AV | و <u>ب</u> | TR | THO | AT _c | AT _{NC} | ED | EF | €T | CF | | | | | | | water table | (0) | permeability) | Note (cm²) | (g/cm²) | (unidess) | (cm²/cm²) | (unitiess) | (unitiess) | (yre) | (986) | (VF) | (Ceye/yr) | (hts/day) | (hravyr) | | 71556
76131 | 1.1.1-Trichlorosthere Trichloro-1.2.2-Iriflourosthere, 1.1.2- | 5.27E+01 | 15 | 62.78
62.78 | LS | 10 | LS | 1 | 15 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 79005
75343 | 1,1,2-Trichloroethane | | 15 | 62.78 | L\$
ĻS | 10 | LS
LS | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-08 | | 70 | 2 2 | 2. | 26 | 2.5 | 8760
8760 | | 75354 | 1.1-Dichteroethere 1.1-Dichteroethere | 7,24E+01
9,00E+00 | 15 | 62,78 | LS
LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 03 | 1.0E-06 | 1 | 70 | 2 | ž | 26 | 2.8 | 5760 | | 120821 | 1,2,4-Trichiorobenzene | | 15 | 52,78 | LS | 10 | LS. | | 1.5 | 0,43 | 03 | 1.0E-06 | 1 | 70
70 | 2 | 2 2 | 26 | 2.5 | 8760
8760 | | 541731 | 1,2-Dichlorobenzene
Dichlorobenzene, 1,3- | 1.00E+00 | 15 | 62.78
62.78 | LS
LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | 2 | 2 | 26 | 2.5 | 5700 | | 106467
78933 | 1,4-Dichlorobenzene | | . 15 | 52.78 | LS | 10 | LS | 1 | 1.5 | 0.43 | 03 | 1 QE-08 | 1 | 70
70 | - 2 | 2 | 26
28 | 2.5 | 8760
8760 | | 67641 | Butenone, 2: (MEK) Acetone | 2.42E+01 | 15
15 | 62.76
62.78 | LS
LS | 10 | LS
LS | - 1 | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 71432
74839 | Benzene | 6.54E+00 | 15 | 62.78 | LS | 10 | ĻŞ | 1 | 1.5 | 0.43 | 0.3 | 1 DE-06 | | 70 | 2 | 2 | 26 | 25 | 8760
8760 | | 75150 | Bromomethene
Carbon Disuffice | 1.00E+00 | 15
15 | 52.78
62.78 | ĻS
Ļ\$ | 10 | LS
LS | | 1,5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70
70 | 2 | | 26 | 2.5 | 5760 | | 106907
75003 | Chlorobenzene
Ethyl Chloride | 1,00€+00 | 15 | 62 76 | LS | 10 | LS | 1 | 1,5 | 0.43 | 0.3 | 105-06 | 1 1 | 70 | - 4 | . 2 | 26 | 2.5 | 5760
5760 | | 67663 | Chloroform | 3,05E+01 | 15
15 | 52 78
52 78 | LS
LS | 10 | LS
LS | + | 1.5 | 0.43 | 0.3 | 1 0E-06
1,0E-06 | 1 | 70
70 | 2 | 3 | 26 | 2.5 | 8760
8760 | | 166592
110627 | cie-1,2-Dichicroethylene
Cyclohexane | 7.43E+02 | 15
15 | 62.78
62.78 | LS | 10 | LS | | 1,5 | 0.43 | 0.3 | 1.0E-09 | L | 70 | 2 | 2 | 26 | 2.6 | 8760 | | 100414
96828 | Ethylograpia | 7.61E+00 | 15 | 62 7B | LS
LS | 10 | LS
LS | ' | 1,5 | 0.43 | 0.3 | 1.0E-06 | | 70
70 | | 2 | 26
26 | 25
25 | 8760
8760 | | 108872 | Methyl cyclohexene | 7.00E+00 | 15
16 | 62,78
62.78 | LS
LS | 10 | LS | 1 | 1,5 | 0.43 | 0.3 | 1.05-06 | | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 1634544
76092 | Methyl-Temery-Butul Ether | | 15 | 52.78 | <u> </u> | 10 | LS
LS | | 1.5
1.5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | 1 1 | 70
70 | <u>2</u> | - 3 | 26
26 | 2.5 | 8760
8760 | | 127184 | Methylana chlorida
Tetrachlorositylona | J.59E+01
7.00E+00 | 15
15 | 62.78
62.78 | LS
LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.1 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 108883
156605 | Toluene | 1.71E+01 | 15 | 62,78 | L8 | 10 | Ī.S | 1 | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | | 70 | 2 2 | 2 | 26
26 | 2.5 | 8760
8760 | | 79016 | Fare-1.2-Okthorosthylene
Yrichlorosthylene | 1.26E+01
J.31E+01 | 15
15 | 62.78
62.78 | LS
LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 | 70
70 | 2 | 2 | 26 | 26 | 8760 | | 75014
1330207 | Virvi chloride
Xylenes | 1,85E+02 | 15
15 | 52.78 | L3 | 10 | | 1 | 1.5 | 0.43 | 0.3 | 1,05-06 | | 70 | 2 | 2 | 26 | 25 | 8760
8760 | | 98862 | Acerophenone | | 15 | 62.78
62.78 | LS
LS | 10 | LS
LS | 1 | 15 | 0.43 | 0.3
0.3 | 1.0E-06
1.0E-06 | 1 | 70
70 | 2 | . 2 | 26 | 2.5 | 8760
8760 | | 91203
91676 | Nachtralane
Metrykraphthylene, 2- | 9.09E+00
5.69E+00 | 15
15 | 62.78
62.78 | LS
LS | 10 | įs. | 1 | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 87(x) | | 92524
208968 | Bohand, 1,1 | 3 0#g+yo | 15 | 62.78 | LS . | 10 | LS
LS | 1 | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70
70 | - 2 | 2 | 28 | 2.5 | 8760
8760 | | 83329 | Acenephthylene
Acenephthene | | 15
15 | 62.78
62.78 | La | 10 | LS | 1 | 1.6 | 0 43 | 0.1 | 1,06-06 | 1 1 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 86737
85018 | Fluorene | | 15 | 82.78 | LS | 10
10 | LS
LS | | 1,5 | 0.43
0.43 | 0.3 | 1,0E-06
1,0E-06 | 1 1 | 70 | 2 | 2 | 26 | 2.6 | 8760
8760 | | 120127 | Phonenthrone
Anthrocene | 5,74€+00 | 15
15 | 62,78
62,78 | 15 | 10 | LS | | 1,5 | 0.43
0.43 | 0,3 | 1,05-06 | , | 70 | 2 | 7 | 26 | 2.5 | 8780 | | C9-C18
C11-C22 | CS-C18 Aliphates | 9.51E+02 | 15 | 62.78 | LS
LS | 10 | L8
LS | ~ } | 1.5 | 0.43 | 0.3 | 1,05-06
1,05-06 | | 70
70 | 2 | 2 | 26 | 26 | 8760
8760 | | C5-C6 | C11-C27 Aromatica
C5-C8 Allphalica | 4,19E+02
1,15E+02 | 15
15 | 62.78
52.78 | LS
LS | 10 | LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | | .70 | . 2 | 2 | 26 | 2.5 | 8760 | | C9-C10
C9-C12 | C9-C10 Aromatica | 7.18E+01 | 15 | 52.76 | LS | 10 | LS
LS | <u>i </u> | 1.6 | 0.43 | 0.3 | 1.0E-06
1,0E-06 | 1 1 | 70 | | 2 | 26 | 2.5 | 8760
8760 | | Note: | CB-C12 Allehatica | 3,30E+01 | 15 | 52.73 | LS | 10 | L8 | 1 | 1.5 | 0.43 | D.3 | 1.05-06 | L. 1 | 70 | Ž | ž | 26 | 26 | 8760 | | 1) Default soil perer | maters from table 7 of User's Guide for E | voluning Subaurlace Vap | or Introdion Into Building (| U.S. EPA June 19 | 1, 2003) were used | for eal water (tipe | porovity (6 ₄₄), and organ | ic carbon fraction (f _m) | , soil lotal porceit | y (n), and soil dry | bulk density (p _e). | | | | | | | | | Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Murphy Waste Oli | Chemical
CAS No. | Chemical | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m³/mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Organic carbon partition coefficient, K_{∞} (cm 3 /g) | Pure
component
-water
solubility,
S
(mg/L) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | |---------------------|-------------------------------------|--|--|--|--|--|---|--|---|---|---|---------------------------------------| | | | | | | | | | | | | | | | 71556 | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7,136 | 347.24 | 545.00 | 1,10E+02 | 1,33E+03 | N/A | 2.2E+00 | | 76131 | Trichloro-1,2,2-triflouroethane, 1, | | 8.07E-06 | 5.17E-01 | 25 | 1,326 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | 79005 | 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 |
9.12E-04 | 25 | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | 75343 | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 | 330,55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | 75354 | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | 120821 | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | 95501 | 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465,00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | 541731 | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1,242 | 446.00 | 683.96 | 1.70E+02 | 6.88E+01 | N/A | N/A | | 106467 | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7,38E+01 | N/A | 8.0E-01 | | 78933 | Butanone, 2- (MEK) | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88E-05 | 25 | 6,955 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,342 | 353.24 | 562,16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3,71E-03 | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,355 | 249.00 | 373,50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | 67663 | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | 156592 | cis-1,2-Dichloroethylene | 7,38E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | 110827 | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353.85 | 530.78 | 1,60E+02 | 5.50E+01 | #N/A | #N/A | | 100414 | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,259 | 425.40 | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,324 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6.706 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 1,55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 108883 | Toluene | 8.70E-02 | 8,60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | 591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1,333 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0 E- 01 | | 79016 | Trichloroethylene | 7.90E-02 | 9.10E-06 | 1,03E-02 | 25 | 7,505 | 360,36 | 544.20 | 1.66E+02 | 1,10E+03 | 1.1E-04 | 4.0E-02 | | 75014 | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2,76E+03 | 8.8E-06 | 1.0E-01 | | 1330207 | Xvienes . | 7.69E-02 | 8.44E-06 | 6,73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2,20E+02 | N/A | 1.0E-01 | | 98862 | Acetophenone | 6.00E-02 | 8.73E-06 | 1.02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | 91203 | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | 91576 | • | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | 92524 | Methylnaphthalene, 2- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | 208968 | Biphenyl, 1,1'- | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | | | Acenaphthylene | | | 1.55E-04 | 25 | 12,155 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | 83329 | Acenaphthene | 4.21E-02 | 7.69E-06 | | | | | | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | 86737 | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 12,666 | 570.44 | 870.00 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | 85018 | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869,01 | | | | | | 120127 | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873,00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25 | NA NA | NA NA | NA NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6.00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA NA | NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA NA | NA | NA NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA. | NA | NA | 1,50E+05 | 7.00E+01 | N/A | 2.0E-01 | Accendix C.4. Johnson & Ettinger Model - Celculations Screen Inhelation of Volatiles from Groundwater Future Child Recreation Scenario - CT Southwest Prottine, Wells G&H Superkand Ste, Operable Unit 2 Murphy Waste Of | | Source-
building
separation, | Vectore
zone soli
air-filled
porcetty,
6_Y | Vadose zone
effective
toler fluid
esturation,
8 | Variose zone
soil
intrinsic
permeability, | Vectose zone soil relative str permeability. | Vadnes zone
soli
ellective vapor
permeability, | Thickness of capillary 2004, | Yotal
porosity in
capillary
zone, | Air-filled
porcelly in
papillary
zone, | Water-filled
proteity in
capillary
zona, | Floor-
wai
seem
penmeter, | Bidg.
ventiletion
rate. | Area of
enclosed
space
below
grade, | Crack-
to-total
gree
ratio, | Creck
depth
below
grade, | Enthaloy of
vaponzacion al
ave groundweler
temperature, | Henry's law
constant at
over proundwater
temperature, | Henry's law
constant at
r vs. groundwat
femperature, | |---|------------------------------------|--|---|--|--|---|------------------------------|--|---|---|------------------------------------|-------------------------------|---|---------------------------------------|-----------------------------------|--|--|---| | | (gm) | (cm³/cm³) | (cm²/cm²) | (cm²) | (cm²) | (om²) | , L _{et} | (<u>. </u> | θ | 6 | Xcreck | Charter | Α. | T) | Zook | ΔΗ, 🕶 | H _{TR} | нъ | | | 1 | 7 | ,, | (2011) | 160.11 | (GH) | (cm) | (cm³/cm³) | (cm³/cm³) | (cm³/cm²) | (crn) | (cm³/s) | (cm²) | (unitiess) | (cm) | (ca/mol) | (alm-m²/mol) | (unitless) | | 71556 1,1,1-Trichktroethane | 47.70 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 76131 Trichicro-1,2,2-triflouroethane, 1,1,2- | 47.76 | 0.130 | 0.659 | 1.62E-05 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+08 | 2.48E-04 | 15 | 7,885 | 8.50E-03 | 3 66E-01 | | 79005 1,1,2-Trichloroethene | 47.76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.56E+03 | 6.93E+05 | 2.60E+06
2.60E+06 | 2 48E-04 | 15 | 1,438 | 4.55E-01 | 1.96E+01 | | 75343 1,1-Dichloroethame | 47.7B | Q.130 | D.659 | 1 62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2 49E-04
2 48E-04 | 15 | 9,572 | 3.88E-04 | 1.67E-02 | | 75354 1,1-Cichlorouthylane | 17.76 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2 48E-04 | 15 | 7,450
6,392 | 2.88E-03 | 1,24E-01 | | 120821 1,2,4-Trichloroberusme | 47.78 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 13,230 | 1.47E-02 | 6.34E-01 | | 95501 1,2-Dichlorobenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2 60E+06 | 2.48E-04 | 15 | 1,521 | 1,35E-04
1,41E-06 | 1.87E-02 | | 541731 Dichlorobenzene: 1,3- | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 5.33E-09 | 18,75 | 0.43 | 0.127 | 0 303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1.503 | 4.11E-03 | 6.09E-05 | | 106467 1,4-Dichlorobenzene | 47,78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 15.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.50E+06 | 2.48E-04 | 15 | 11.243 | 8.89E-04 | 3.83E-02 | | 78933 Butanone, 2- (MEK)
67641 Apatone | 47.78 | 0.130 | 0.659 | 1.62E-06 | 0 390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0 303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1.486 | 4.90E-05 | 2.11E-03 | | 71432 Benzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7 559 | 1.97E-05 |
8.50E-04 | | 74839 Bromometume | 47.78 | D. 130 | 0.659 | 1.52E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6 55E+03 | 6.93E+05 | 2.50E+06 | 2.4BE-04 | 15 | 8,122 | 2.69E-03 | 1.16E-01 | | 75150 Cerbon Disuffice | 47.78
47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,337 | 5.52E-03 | 2.38E-01 | | 108907 Chlorobenzene | | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 8 93E+05 | 2.60E+06 | 2.48E-04 | 15 | 6.682 | 5.99E-03 | 3.01E-01 | | 75003 Ethyl Chloride | 47.78 | 0.130 | 0.659 | 1,62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6 55E+03 | 6 93E+05 | 2.60E+06 | 2.48E-04 | 15 | 9.603 | 1.54E-03 | 5.65E-02 | | 67663 Chkoroform | 47.78
47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+05 | 2 48E-04 | 15 | 1,201 | 7.79E-03 | 3.35E-01 | | 156592 cts-1,2-Dichloroethylene | 47.78 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0,303 | 6.55E+03 | 6 93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7.554 | 1.86E-03 | 8.02E-02 | | 110827 Cycloheosme | 47.78 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7.734 | 2.04E-03 | 8.77E-02 | | 100414 Ethylbenzene | 47.78 | 0.130 | 0.659 | 1.62E-08
1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1.486 | 1.75E+00 | 7.54E+01 | | 98825 Isopropylbenzene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 10,155 | 3.18E-03 | 1.37E-01 | | 108872 Methyl cyclohexene | 47.76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 0 43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,540 | 1 28E-02 | 5.51E-01 | | 1834044 Methyl-Teclary-Sutyl Ether | 47.76 | 0.130 | 0.559 | 1.62E-08 | 0,390 | 6 33E-09 | 18 75 | 0 43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,505 | 3.70E-01 | 1.59E+01 | | 75092 Methylene chloride | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 0.43 | 0 127 | 0.303 | 6.55E+03 | 6.93E+05 | 2,60E+06 | 2.48E-04 | - 5 | 1,447 | 5 16E-04 | 2.22E-02 | | 127184 Tetrachioroethylene | 47.76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 18 75 | 0.43 | 0 127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 7,034 | 1.17E-03 | 5.03E-02 | | 108883 Tokyene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75
18.75 | 0.43 | 0 127 | 0.303 | 6.55E+03 | 6.93E+05 | 2 60E+06 | 2,45E-04 | 15 | 9,553 | 7.83E-03 | 3.37E-01 | | 156905 trans-1,2-Dictrionasthylane | 47.78 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6 55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 9,154 | 2 92E-03 | 1.26E-01 | | 79018 Trichicroethylane | 47.78 | 0.530 | 0.659 | 1 62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 8.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,417 | 8 27E-03 | 3.56E-01 | | 75014 Vinyl chloride | 47.78 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0 127
0 127 | 0,303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | B,557 | 4 79E-03 | 2,06E-01 | | 1330207 Xylenes | 47.78 | 0 130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03
6.55E+03 | 6 93E+05 | 2.60E+06 | 2.48E-04 | 15 | 5,000 | 1.73E-02 | 7.46E-01 | | 98662 Acetophenone | 47.75 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55F+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,542 | 5.86E-06 | 2.52E-04 | | 91203 Naphthalene | 47,76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05
6.93E+05 | 2.60E+06
2.60E+06 | 2 48E-04 | 15 | 1,518 | 8.91E-06 | 3.83E-04 | | 91576 Methylhaphthalene, 2- | 47.78 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33F-09 | 16.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 5.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 12,913 | 1.52E-04 | 6.55E-03 | | 92524 Biphenyl 1 1'- | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | D.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,506 | 6.66E-04 | 3.81E-02 | | 208968 Aceruphthylene | 47.78 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | D43 | 9.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | 1,472 | 2,66E-04 | 1.14E-02 | | 83329 Acenaphthere | 47.78 | 0 130 | 0.659 | 1.62E-05 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.45E-04 | 15 | 1,513 | 2.45E-04 | 1.05E-02 | | 96737 Fluorene | 47,78 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 5.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2 48E-04
2 48E-04 | 15 | 16,123 | 3.67E-05 | 1.58E-03 | | 85018 Phenenthrene | 47,78 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | D 127 | 0.303 | 6.55E+03 | 5.93E+05 | 2.60E+06 | 2.48E-04 | | 16,235 | 2 20E-08 | 9.48E-07 | | 120127 Anthracene | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 8.55E+03 | 6.93E+05 | 2.60E+06 | Z.48E-04 | 15 | 1,479
18,353 | 1.14E-04 | 4.90E-03 | | C9-C18 C9-C18 Alphatics | 47.78 | D. 130 | 0,659 | 1.62E-08 | 0.390 | 6.33E-09 | 15.75 | 0.43 | 0.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.45E-04 | 15 | 18,353
NA | 1.28E-05 | 5.43E-04 | | C11-C22 C11-C22 Aramatics | 47.76 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.003 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | | | B.28E-01 | 3 55E+01 | | C5-C8 C5-C8 Aliphatics | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | D.127 | 0.303 | 6.55E+03 | 6.93E+05 | 2.60E+06 | 2.48E-04 | 15 | NA
NA | 3 60E-04 | 1.55E-02 | | C9-C10 C9-C10 Aromatics | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | D 127 | 0.303 | 6.55E+03 | 6.93E+05 | 2 60E+06 | 2.48E-04 | 15 | NA NA | 6.48E-01 | 2.79E+01 | | C9-C12 C9-C12 Allphalics | 47.78 | 0.130 | 0.659 | 1.62E-08 | 0 390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.000 | 6 55E+03 | 6.93E+05 | | 2 48E-04 | 15 | NA
NA | 3,96E-03
7,50E-01 | 1.70E-01
3.35E+01 | Ĺ Appendix C.4 Johnson & Ettinger Model - Calculations Screen Inhibitation of Vocatiles from Groundwater Future Child Recreational Scenario - CT Southwest Presides, Wells G&H Suberfund Ste, Open Murphy Waste Oil | 1355 1.1. | | Vapor
viscosity at
mes, soil
temperature,
Pre- | Vadore zane
effective
chrusion
coefficient,
D ^{rai} v | Capitary
2014
effective
diffusion
coefficient,
D ^M | Total
cversil
effective
diffusion
coefficient, | Diffusion
eath
tempth, | Convection
path
length,
L _a | Source
vepor
cons.,
C _{essoo} | Crack
radius,
ruma | Average
Vapor
flow rate
into bidg., | Creck effective diffusion conficient | Area of
crack,
A _{crea} | Exponent of
equivalent
foundation
Peolet
number,
exp(Pe ⁶) | Infinite
source
indoor
attenuation
coefficient | Infinite
source
bidg,
sons,
Guess | Unik
risk
fæstor,
URF | Reference
conc.,
RIC |
--|---|--|--|--|--|------------------------------|---|---|--------------------------|--|--------------------------------------|--|---|--|---|--------------------------------|----------------------------| | Property | | (g/cm-s) | (cm²/s) | (om²/e) | (cm²/s) | (em) | (cm) | <u> (μο/m²)</u> | (u m) | (cm³/s) | (cm²/s) | (⊂ m*) | (unitiess) | (unifiess) | (µp/m³) | (μg/m³) ⁻¹ | (mg/m ⁻) | | Military 1986 198 | 71555 1,1,1-Trichloroethane | 1.75E-04 | 4.75E-04 | 4.455-04 | 4.63E-04 | 47.78 | 16 | 102EANA | 0.40 | Lanciati | . 200 | | | | | , | | | Proceedings | 76131 Trichloro-1,2,2-triflourouthane, 1,1,2- | 1.75E-04 | | | | | | | | | | | | | | | | | Table 1.75 | 79005 1,1,2-Trichkoroethene | 1,75E-04 | 5.24E-04 | | | | | | | | | | | | | | | | 1785 1.500 1.700 | 75343 1,1-Dichloroethane | 1,75E+04 | | | | | | | | | | | | | | | | | 1786-04 2786-04 2786-04 2786-04 2778 15 | 75354 1,1-Dichloroeth/iene | 1,75E-04 | | | | | | | | | | | | | | | | | Property 1.75 | | 1.75E-04 | | | | | | | | | | | | | | | | | March Marc | 95501 1,2-Dichlorobenzene | 1.75E-04 | | | | | | | | | | | | | | | | | 1756-04 4,906-04 4,906-04 4,906-04 4,906-04 4,906-04 4,778 15 1778 15 1778 1 | 541731 Dichlorobenzene, 1,3- | 1.75E-04 | | | | | | | | | | | | | | | | | Process | 106487 1,4-Dichlorobenzene | 1.75E-04 | | | | | | | | | | | | | | | | | 1785-04
1785-04 1785-04 1785-04 1785-04 1785-04 1785-04 1785-04 1785-04 1785 | 78933 Butenone, 2- (MEK) | 1.755-04 | | | | | | | | | | | | | | | | | 74639 [Promoreshare 1,756-04 4,466-04 4,196-04 4,326-04 4,778 15 7,376-62 0,10 1,066-01 3,486-04 3,478 1,776 1,778 | | 1.75E-04 | | | | | | | | | | | | | | | | | 745-09 Personnehme | | 1.75E-04 | 5.42E-04 | | | | | | | | | | | | | | | | 73150 Centro (Busides) 178E-04 6. MEA 59E-04 177E-04 1. MED 4. 177 | 74839 Bromomethane | 1.75E-04 | | | | | | | | | | | | | | | | | 1786-04 1786-04 1786-04 1786-04 1786-04 1778 15 6,855-04 0.10 105-04 0.455-04 | | 1.75E-04 | | | | | | | | | | | | | | | | | 7503 Erw Chipride 7,550-04 7,5 | | 1.75E-04 | | | | | | | | | | | | | | | | | 67663 [Chevalorim 1.78C-04 4.58C-04 6.29C-04 6.29C-04 7.78 15 1.58C-04 1.58C-04 4.58C-04 4.58C-04 4.38C-04 4.38C-04 4.78C-04 7.78 15 6.29C-04 6.29C-04 6.28C-04 7.88C-04 | | 1.75E-04 | | | | | | | | | | | | | | | | | 1,0027 Cochespore | | | | | | | | | | | | | | | | | | | 10027 Cyclohaman | 155592 cls-1,2-Dichloroethylene | 1.75E-04 | | | | | | | | | | | | | | | 5.0E-02 | | 175E-04 450E-04 450E | f10827 Cyclohecune | | | | | | | | | | | | | | | | | | 98020 Isparruphiamane 1,75E-04 3,95E-04 3,77E-04 3,95E-04 4,778 19 Industry 1,04E-021 1,04E-02 | 100414 Ethythenzane | | | | | | | | | | | | | | | | | | 158904 Methyl Frishing-RUM (Steff) 1.75E-04 5.98E-04 5.58E-04 5.58E-04 6.778 15 1.77E-05 0.10 1.04E-01 5.98E-04 6.75E-02 6.95E-05 1.75E-05 1.75E-05 1.75E-05 6.95E-04 6.778 15 1.77E-05 0.10 1.04E-01 5.97E-04 6.45E-02 2.47E-015 1.75E-05 1.75E-0 | 98828 letpropylbenzene | | | | | | | | | | | | | | | | 1.0E+00 | | 155044 Methyler chistory 1,755-04 6,756-04 5,856-04 5,856-04 5,856-04 6,78 15 15 NA 0.10 1,046-01 5,866-04 6,856-02 2,166-05 NA NA 3,060-01 1,756-04 1,756-0 | 106872 Methyl pycichecene | | | | | | | | | | | | | | | | 4.0E-01 | | Total Methyleme 1,755-04 0,385-04 0,185-04
0,185-04 | 1634044 Methyl-Terbary-Butyl Ether | | | | | | | | | | | | | | | | 3.0E+00 | | 175E-04 175E | 75092 Methylene chloride | | | | | | | | | | | | | | | | 3.0E+00 | | 198605 Tobarre 1.75E-04 5.3E-04 5.00E-04 5. | 127184 Tetrachiorpethylene | | | | | | | | | | | | | | | | 3.0E+00 | | 19665 Street 1_2 Chickrosthylane | 108863 Toluene | | | | | | | | | | | | | | | 5.9E-06 | N/A | | 79016 Trothkrustrytem | 156605 trans-1,2-Dichlorostrylana | | | | | | | | | | | | | | | | 4.0E-01 | | 75014 Vml chloroide | 79016 Trichlorouthylene | | | | | | | | | | | | | | | | 2.0E-01 | | 130027 Memory 1,755-04 1, | | | | | | | | | | | | | | | | | 4.0E-02 | | 95002 Acetophenora | | | | | | | | | | | | | | | 1.59E+00 | 8.6E-06 | 1,0E-01 | | 31(20) Ng/hythere | 98862 Acetophenone | | | | | | | | | | | | | | N/A | N/A | 1.0E-01 | | 91576 Methywapthalana, 2. 1756-04 3.18C-0 2.86C-0 47.78 15 3.86C-0 1.04E-01 3.18C-0 6.45E-02 2.86C-0 1.06E-03 3.38C-0 1.04E-01 3.18C-0 6.45E-02 3.86C-0 1.04E-01 3.18C-0 3.04E-0 1.04E-0 | | | | | | | | | | | | | | | | | NA | | 92524 Biptomy, 1,1"- 1756-04 3.196-04 3.016-04 3.096-04 4.778 15 N/A 0.10 1.046-01 3.196-04 6.456-02 8NAM 9.276-06 N/A N/A 3.06-05 3.0 | | | | | | | | | | | | | | | | N/A | 3.0E-03 | | 2005002 Assemble 1,755-04 3,398-04 3,285-04 3,318-04 4,778 16 NA 0.10 1,048-07 3,185-04 6,455-02 MA,MH 9,575-06 NA NA NA NA NA NA NA N | 92524 Biohemi 1 1'- | | | | | | | | | | | | | | 2,07E-03 | NA | 3.0E-03 | | State | | | | | | | | | | | | | | | | N/A | N/A | | 8973/ Paperthrians 1.79E-04 8.16E-01 3.00E-01 8.6E-01 4.76 15 6VA 0.10 100E-01 7.30E-04 6.45E-02 1.30E-143 1.19E-05 N/A V/A 3.0E-01 5.50E-01 100E-01 7.30E-04 6.45E-02 1.30E-01 5.40E-05 N/A N/A 3.0E-01 5.50E-01 100E-01 7.30E-04 6.45E-02 1.30E-01 5.40E-05 N/A N/A 3.0E-01 100E-01 7.30E-04 100E-01 7.30E-04 1.0E-01 1.20E-01 1.20E-04 7.30E-04 1.20E-01 7.30E-04 1.20E-01 7.30E-04 1.20E-01 7.30 | 83329 Acenerations | | | | | | | | | | | | | | N/A | N/A | 3.0E-03 | | 65/18 Physicityres 17E-04 3.55-04 3.65-04 3.65-04 47.78 15 0.70 1.04-01 5.65-01 6.45-02 1.36-00 5.65-02 1.36-00 0.10 1.04-01 1 | | | | | | | | | | | | | | | | N/A | 3.0E-03 | | 130127 Arthresine | | | | | | | | | | | | | | | | | 3.0E-03 | | C2-C16 C2-C16 Alphatics 1,755-C4 3,045-C4 3,045-C4 1,055-C4 3,055-C4 2,055-C4 2,055- | | | | | | | | | | | | | | | Z 72E-04 | NA | 3.0E-03 | | G11-G22 D11-G22 Armelés 1,755-04 3,955-04 4,778 15 3,395-07 0.10 1,045-01 3,645-04 6,455-02 4,085-28 19,055-05 18,055-02 N/A 2,055-05 19 | | | | | | | | | | | | | | | | N/A | 3.0E-03 | | C5-C5 C5-C5 Alphasido 1.75E-04 3.6E-04 3.6E-04 47.78 15 6.45E-03 0.10 1.04E-01 4.27E-04 6.45E-02 7.32E-245 1.03E-05 6.8E-02 N/A 5.0E-07 C5-C5 C5-C5 Alphasido 1.75E-04 3.6E-04 3.6E-04 3.6E-04 47.78 15 3.22E-05 0.10 1.04E-01 3.6E-04 6.45E-02 4.8*E-280 9.74E-09 9.74E | C11-C22 D11-C22 Acomplica | | | | | | | | | | | | | | 3.30E+02 | N/A | 2.0E-01 | | CS-010 (SS-010 Annualiza 1.755-04 3.685-04 3.685-04 3.685-04 47.78 15 3.225-04 0.10 1.045-01 3.685-04 6.455-02 4.415-289 1.055-05
1.055-05 | C5-C5 C5-C8 Althoring | | | | | | | | | | | | | 1.03∈-05 | 6.86E-02 | N/A | 5.0E-02 | | C9-013 (24-014 About 3460-04 3460-04 3600-04 3600-04 0.10 1,046-01 3,898-04 6,456-02 1,026-09 1,206-01 N/A 5,06-01 | C9-C10 C9-C10 Arematics | | | | | | | | | | 3.64E-04 | 5.45E+02 | 4.81E+288 | 9.74E-09 | 3.14E+01 | N/A | 2.0E-01 | | 0.702/ | C9-C12 C9-C12 Allehates | 1.75E-04 | 3.645-04 | 3.46E-04
3.40E-04 | 3.54E-04 | 47.78
47.78 | | | | | 3,69E-04 | 6.45E+02 | 1 62E+284 | 9.80E-01 | 1.20E-01 | N/A | 5.0E-02 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Murphy Waste Oil # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL RISK CALCULATIONS: | | | Indoor
exposure | Indoor
exposure | Risk-based indoor | Pure
component | Final
indoor | |------------------|---|--------------------|--------------------|-------------------|-------------------|------------------| | | | groundwater | groundwater | exposure | water | exposure | | | | conc., | CDNC., | groundwater | solubility, | groundwater | | | | carcinogen | noncarcinogen | conc., | Տ
(µg/L) | conc.,
(µg/L) | | | | (μg/L) | (μ g/L) | (μg/L) | (Jugar) | (HB/C) | | 71556 | 1,1,1-Trichloroethane | NA | NA NA | NA | 1.33E+06 | NA | | 76131 | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA | NA | NA | 1.70E+05 | NA | | 79005 | 1.1.2-Trichloroethane | NA | NA | NA | 4.42E+06 | NA | | 75343 | 1.1-Dichloroethane | NA NA | NA | NA | 5.06E+06 | NA | | 75354 | 1,1-Dichloroethylene | NA | NA | NA | 2.25E+06 | NA | | 120821 | 1,2,4-Trichlorobenzene | NA | NA | NA. | 3.00E+05 | NA | | 95501 | 1,2-Dichlorobenzene | NA NA | NA NA | NA | 2.77E+07 | NA | | 54173 1 | Dichlarobenzene, 1,3- | NA | NA | AN | 6.88E+04 | NA | | 106467 | 1.4-Dichlorobenzene | NA | NA. | NA. | 7.38E+04 | NA | | 78933 | Butanone, 2- (MEK) | NA | NA | NA | 2.23E+08 | NA. | | 67641 | Acetone | NA | NA NA | NA. | 1.00E+09 | NA | | 71432 | Benzene | NA | NA | NA | 1.75E+06 | NA | | 74839 | Bromomethane | NA | NA | NA. | 1.52E+07 | NA | | 75150 | Carbon Disulfide | NA NA | NA. | NA | 2,67E+06 | NA | | 108907 | Chloroberizene | NA. | NA. | NA | 4,72E+05 | NA. | | 75003 | Ethyl Chloride | NA | NA | NA NA | 5.32E+06 | NA. | | 67663 | Chloroform | NA. | NA NA | NA. | 7,92E+06 | NA. | | 156592 | cis-1,2-Dichloroethylene | NA | NA. | NA. | 3.50E+06 | NA | | 110827 | Cyclohexane | NA NA | NA. | NA. | 5.50E+04 | NA. | | 10027 | Ethylbenzene | NA NA | NA NA | NA. | 1.69E+05 | NA NA | | 98828 | Isopropylbenzene | NA NA | NA. | NA. | 5,60E+04 | NA. | | 108872 | Methyl cyclohexane | NA NA | NA. | NA. | 1.40E+04 | NA | | 1634044 | Methyl-Tertiary-Butyl Ether | NA NA | NA NA | NA. | 5.10E+07 | NA. | | 75092 | Methylene chloride | NA NA | NA NA | NA. | 1.30E+07 | NA NA | | 127184 | Tetrachloroethylene | NA NA | NA NA | NA. | 2.00E+05 | NA NA | | 108883 | Toluene | NA NA | NA
NA | NA NA | 5.26E+05 | NA NA | | 156605 | trans-1,2-Dichloroethylene | NA NA | NA NA | NA NA | 6.30E+06 | NA NA | | 79016 | Trichloroethylene | NA NA | NA NA | NA NA | 1.10E+06 | NA NA | | 75014 | Vinyl chloride | NA NA | NA NA | NA NA | 2.76E+06 | NA. | | 75014
1330207 | - | NA NA | NA NA | NA NA | 2.20E+05 | NA. | | | Xylenes | NA NA | NA NA | NA NA | 6.13E+06 | NA. | | 98862 | Acetophenone | NA NA | NA NA | NA NA | 3.10E+04 | NA NA | | 91203 | Naphthalene | NA NA | NA NA | NA
NA | 2.46E+04 | NA. | | 91576 | Methylnaphthalene, 2- | NA
NA | NA NA | NA
NA | 6.94E+03 | NA. | | 92524 | Biphenyl, 1,1'- | | NA NA | NA NA | 3.93E+03 | NA. | | 208968 | Acenaphthylene | NA
NA | NA
NA | NA NA | 4.24E+03 | NA. | | 83329 | Acenaphthene | | | NA NA | 1.90E+03 | NA. | | 86737 | Fluorene | NA NA | NA
NA | NA NA | 1.28E+03 | NA. | | 85018 | Phenanthrene | NA NA | NA
NA | NA
NA | 4.34E+01 | NA NA | | 120127 | Anthracene | NA NA | NA
NA | | 1.00E+04 | NA NA | | C9-C18 | C9-C18 Aliphatics | NA NA | NA NA | . NA | 5.80E+06 | NA NA | | C11-C22 | C11-C22 Aromatics | NA | NA. | NA | 1.10E+07 | NA NA | | C5-C8 | C5-C8 Aliphatics | NA NA | NA NA | NA NA | 5.10E+07 | NA NA | | C9-C10 | C9-C10 Aromatics | NA | NA | NA | 7.00E+04 | NA NA | | C9-C12 | C9-C12 Aliphatics | NA | NA NA | NA NA | 7.00E+04 | I RA | | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | (trintess) | /unideas/ | |---------------|---------------| | NA NA | 6.9E-07 | | NA NA | NA NA | | NA NA | NA NA | | | 1.4E-06 | | NA NA | · | | NA
NA | 2.3E-06
NA | | | NA NA | | NA
NA | NA NA | | | NA NA | | NA NA | NA NA | | NA
NA | | | NA | NA
DATE OF | | 1.4E-11 | 2.1E-06 | | NA NA | 3.7E-06
NA | | NA
NA | 8.6E-08 | | | | | NA
NA | 9.0E-08
NA | | NA
NA | 2.5E-05 | | NA NA | | | NA
NA | NA
9.4E.09 | | NA NA | 8.1E-08 | | NA
NA | NA 3.15.06 | | NA
NA | 3.1E-06 | | NA
0.4E.13 | NA NA | | 9.1E-13 | 2.3E-08
NA | | 3.1E-11 | | | NA
NA | 4.4E-07 | | NA | 1.7E-06 | | 1.7E-09 | 1.4E-05 | | 3.0E-09 | 1.2E-04 | | NA NA | NA NA | | NA NA | NA
1 CE OC | | NA | 1.6E-06 | | NA NA | 5.1E-06 | | NA NA | NA . | | NA NA | NA | | NA NA | NA NA | | NA | NA
575 97 | | NA | 6.7E-07 | | NA | NA NA | | NA | 1.2E-02 | | NA NA | 9.9E-06 | | NA | 1.2E-03 | | NA | 1.8E-05 | | NA | 4.0E-04 | | | | 95% UCL Cancer 95% UCL Risk HI TOTAL: 5E-09 1E-02 = Cancer risk > 1E-05 or HQ/HI>1E+00 | | Ţ | | | | | | | | [| | | | | • | | | | - t | | | |------------------------|---|--------------------------|--------------------------|----------------------|----------------|-----------------------------|--------------------------------|----------------|-------------------------|-----------------------------|--------------|-------------------------------|--------------------|--|--------------|-----------------|--|------------|------------------|------------| | Appendix C.4 | | | | | | | | | <u> </u> | | | | | | | | | | | | | Johnson & Ettinger | Model - Cata Entry Screen | | | | | | | | • | | | | | | | | | ` | N. | | | Inhalation of Volatile | e from Groundwater
Sortel Scenario - RME | Southwest Program | . Wells G&H Superfund Site, Operable | Unit 2 | Abertone Auto Perte | CALCULATE DISK | BASED GROUNDWATER CONCEN | CALCOLA IE ROSK | SASED GROUNDWATER CONCEN | TRATION James "X" in "Y | (E8" box) | | | | | | | | | | | | | | | | | | | ! | YES | 1 | 1 | OR | ļ | GALCULATE INCR | EMENTAL RISKS FROM ACTUAL OF |
DOLLAR WATER COMME | OCT A TOTAL | | | | | | | | | | | | | | | | | | | (enter "X" in "YES" ! | xx and initial groundwater conc. below | | MINIM | | | | | | | | | | | | | | | | | | | · · | | • | YES X | | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | | | | garage. | | | Deoth | | | | ENTER | E | ENTER | | | | | | | | | | | | | ENTER | Errier trittal orcur | ENTER | below stade | | | Ayerape | Vadose zone | | er-definad | ENTER ENTE | R ENTER | | Chemical | Change shirth DISTS | 96% LICK,
Groundwaler | to bottom
of enclosed | Deoth
below grade | SCS | sol/ | SGS | | | Vadoee zone | Vadose zone | Vadoes zone | Target | Tergel hezed | Avereging | Averaging | | | | | | CAS No. | | dans., | epace floor. | to water table, | soil type | groundwater
temperature, | eoil type
(used to setimate | | oli vapor
masbility, | açılı dir.
bulk density, | woll total | act water-tiled | Helt for | auotienii far | ime for | time for | Exposure | Exposure | Exposu | | | (numbers only, | | Cw | | LWT | directly above | T _a | aoi vapor | Unt part | k. | Pa ^V | porowity, | perceity,
8,, ^v | curcinopene,
TR | noncersinopera. | carcinopens, | noncercinogens, | duration. | frequency, | time | (actor | | no dashes) | Chemical | (MO/L) | (15 or 200 cm) | (cm) | water table | (°C) | permeability) | Note | (cm²) | (g/cm²) | | (cm³/cm²) | | тна | ATe | ATHO | ED | EF | ET | | | | | | | 14-10 | | 1 -/ | <u> </u> | TVOMP | (Care) | (grant) | (unitions) | (cm /cm) | (unideas) | (unitiess) | (44.0) | (yrs) | (Vs) | (daya/yr) | (ins/da | N) [Na/yr] | | 71566 | | | 15 | 82.6 | LS | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | 8 | | 78 | 2.5 | 8750 | | 76131 | | | 15 | 82.6 | LS | 10 | LS. | 7 | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | ě | 6 | 78 | 2.5 - | | | 75343 | | | 15 | 82.5
82.5 | Ls | 10 | LS. | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | ó | ð | 78 | 2.5 | | | 75354 | 1,1-Dichlorosthylene | 1,06E-01 | 15 | 82,6 | LS
LS | 10 | LS
LS | | | 1.5 | 0.43 | 0.3 | 1,0E-08 | 1 | 70 | 6 | - 6 | 78 | 2.5 | | | 120821 | 1.2.4-Trichlorobenzene | | 1.5 | 62.6 | LS | 10 | LS | | - | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-08 | 1 1 | 70 70 | <u>6</u> | <u> </u> | 78 | 2.5 | | | 96601
641731 | 1.2-Dichlerobenzens | | 15 | 82,6 | LS | 10 | L. is | 1 | - | 1,6 | 0.43 | 0,3 | 1.0E-05 | -; | 70 | <u> </u> | 6 | 78 | 2.5 | | | 108467 | Dichlorobenzene, 1,3-
1,4-Dichlorobenzene | 4 605 04 | 15 | 62.6 | LS_ | 10 | LS | | | 1.5 | 0.43 | 6.3 | 1.0E-06 | 1 | 70 | 8 | 8 | 78 | - 2.5 | | | 78933 | Butanona 2, (MASK) | 4.68E-01 | 15 | 52.6
82.6 | LS
LS | 10 | LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | 6 | 78 | 2.5 | 8760 | | 67641 | Acetone | | 15 | 82.6 | 1.8 | 10 | LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 | 70 | | | 78 | 2.5 | | | 7(432
74836 | V | 2.61E-01 | 15 | 52,6 | LS | 10 | LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | - ; | 70 | - 5 | | 78
78 | 2.5 | | | 76160 | Bromomethene
Carbon Disuifide | | 15 | 82.6 | LS . | 10 | LS | 1 | | 1,5 | 0.43 | 0.3 | 1.0E-04 | 1 | 70 | | <u>8</u> | 78 | 2.5 | | | 108907 | Chlorobenzene | | 15 | 82.6
82.6 | LS. | 10 | 19 | | | 1.5 | 0.43 | 0.3 | 1.DE-Q6 | 1 | 70 | 5 | 6 | 78 | 2.6 | 8760 | | 76003 | Ethyl Chloride | | 15 | 82.5 | LS | 10 | LS
IS | | | 1.5 | 0.43
0.43 | 0.3 | 1.0E-04 | 1 | 70 | - 6 | | 78 | 2.5 | | | 67663
156502 | Chloroform | | 15 | 82.6 | LS | 10 | LŠ | - i | | 1.6 | 0.43 | 1 83 | 1.0E-06 | | 70 | | - B | 78 | 2.5 | | | 110827 | Cla-1_2-Dichloroethylene
Cyclohecone | 2.90E+01 | 15 | 82.6 | ĻS. | 10 | LS | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-08 | L. 1 | 70 | 6 | | 78 | 2.5 | | | 100414 | Eltybenzene | | 15 | 82.5
82.5 | LS | 10 | LS
LS | - ! | | 1.6 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 6 | - 6 | 78 | 2.5 | 6750 | | 96528 | leastan@erzene | | 15 | 82.6 | Ls | 10 | is | | | 1.5 | 0.43 | 0.3 | 1,0E-06 | | 70 | | 8 | 78 | 2.6 | | | 168872
1634044 | | | . 15 | 82.6 | LS | 10 | LS | - 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 6 | - | 78 | 2.5 | | | 75092 | Motivi-Testary-Sutvi Ether Methylone chloride | 1,40E+01 | 15
15 | 82.6 | LS | 10 | i.s | 1 | | 1.5 | 0.45 | 0.3 | 1.0E-06 | 1 | 70 | - 6 | 6 | 78 | 2.5 | | | 127184 | Tetrachioroety/ione | 4,186-01 | 15 | 82.6 | LS
LS | 10 | LS
LS | 1 | | 1.5 | 0,43 | 0.3 | 1.0E-05 | 1 | 70 | - 5 | 6 | 78 | 2.5 | | | 108883 | Tokuene | | 15 | 82.6 | LS . | 10 | . LS | -i | | 1.5 | 0,43 | 0.3 | 1.0E-06
1.0E-06 | <u>!</u> | 70 | | <u> </u> | 78 | 2.5 | | | 15660S
79016 | 1 | | 15 | 82.6 | ĻS | 10 | LS. | 1 | | 1.5 | 5.43 | 0.3 | 1.0E-06 | | 70 | | | 78
78 | 2.5 | | | 76014 | Yes divortishes | 2.50E+01
2.17E-01 | 15 | 62.6 | L5 | 10 | 18 | | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | - 6 | 8 | 78 | 2.5 | | | 1330207 | Xylenes | E. 17 C. 91 | 18 | 82.8 | LS
LS | 10 | LS | } - | | 1,5 | 0.43 | 0.3
D.3 | 1.0E-06 | 1 | 70 | - 6 | | 78 | 25 | | | 96652
21203 | Acetophenone | | 16 | 82.6 | įš | 10 | ĻŠ | - i | | 1.5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | 1 1 | 70
70 | | | 78 | 2.5 | | | 91576 | Naphthalene 2- | 2,70€+00 | 15 | 82.6 | ĻŞ | 10 | ĻS | 1 | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | | | 78
78 | 2.5 | | | 92524 | | | 15 | 52.6
82.6 | LS
LS | 19
10 | LS | | | 1,5 | 0,43 | 0.3 | 1,0E-06 | 1. | 70 | 9 | | 78 | 2.5 | | | 208968 | Acenaphilitylene | | 15 | 82.6 | LS | 10 | L8
L8 | | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | e | | 78 | 2.5 | | | 83329
96737 | Acensolitiere | | 15 | 82,6 | LS | 10 | Lŝ | | | 1,5 | 0.43 | 0.3 | 1.0E-06
1.0E-05 | 1 | 70 | d | 8 | 78
78 | 2.5 | | | 85018 | Physics
Phenanthrene | 2,10E+00 | 15 | 82.6 | LS | 10 | L8 | 1 | | 1,5 | 9.43 | 0.3 | 1,0E-06 | 1 1 | 70 | 6 | 6 | 78 | 2.5 | | | 120127 | Anthrecene | 2105-01 | 15
16 | 82,5
82,5 | LS
LS | 10 | LŞ. | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-05 | 1 | 70 | 6 | 6 | 78 | 2.5 | 8760 | | C2-C18 | C9-C18 Aliphatica | | 16 | 82.5 | LS | 10 | LS
LS | | | 1.5 | 0.43
0.43 | 0.3 | 1.05-06 | ! | 70 | - | 6 | 78 | 2.5 | | | C11-C22
C8-C8 | C11-C22 Averyation | | 16 | 32.6 | ĻS | 10 | L5 | i | | 1.5 | 0.43 | 0.3 | 1.0E-06 | - ; | 70 | | | 76
78 | 2.5 | | | C9-C10 | C5-C5 Allohutice
C9-C10 Aromatics | | 15 | 82.6 | - 5 | 10 | 1.5 | 1 | | 1.5 | 6.43 | 0.3 | 1,0E-06 | 1 | 70 | 6 | - ĕ | 78 | 2.5 | | | C9-C12 | | | 15 | 82.6 | 1.5 | | LS | 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 6 | Α | 78 | 2.5 | | Note: 1) Default coll parameters from table 7 of Learne Guida for Evaluating Subsurface Vapor Interests into Building (U.S. EPA June 19, 2003) were used for addit under filled porporty (b_p), exil organic curbon h action (f_m), and local porporty (h_p), and sold day bulk density (p_p). Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - RME Southwest Proerties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | Chemical
CAS No. | Chemical | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normat
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Organic
carbon
partition
coefficient,
K _{oc}
(cm³/g) | Pure
component
water
solubility,
S
(mg/L) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | |---------------------|-------------------------------------|--|--|---|--|--|---|--|--|--|---|---------------------------------------| | | | | *************************************** | | | | | | | | | | | | 1,1,1-Trichloroethane | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7,136 | 347.24 | 545,00 | 1,10E+02 | 1.33E+03 | N/A | 2.2E+00 | | | Trichloro-1,2,2-triflouroethane, 1, | 2.88E-02 | 8.07E-06 | 5.17E-01 | 25 | 1,326 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | | 1,1,2-Trichloroethane | 7.80E-02 | 8.80E-06 | 9.12E-04 | 25 | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | | 1,1-Dichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 · | 330.55 | 523,00 | 3,16E+01 | 5.06E+03 | N/A | 5.0E-01 | | | 1,1-Dichloroethylene | 9.00E-02 | 1.04E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | | 1,2,4-Trichlorobenzene | 3.00E-02 | 8.23E-06 | 1.42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | | 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465.00 | 697,50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1,242 | 446.00 | 683.96 | 1.70E+02 | 6.88E+01 | N/A | N/A | | | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | 78933 | Butanone, 2- (MEK)
 8.08E-02 | 9.80 E- 06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528,75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | 67641 | Acetone | 1.24E-01 | 1.14E-05 | 3.88€-05 | 25 | 6,955 | 329.20 | 508,10 | 5,75E-01 | 1.00E+06 | N/A. | N/A | | 71432 | Benzene | 8.80E-02 | 9.80E-06 | 5,56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | 74839 | Bromomethane | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | 75150 | Carbon Disulfide | 1.04E-01 | 1.29E-05 | 1.27E-02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | 108907 | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | 75003 | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,355 | 249.00 | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | 67663 | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 5,988 | 334.32 | 536,40 | 3.98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | 156592 | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 333.65 | 544,00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 353,85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | | 100414 | Ethylbenzene : | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8,501 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | 98828 | Isopropylbenzene | 6.50E-02 | 7.83E-06 | 1.47E-02 | 25 | 1,259 | 425.40 | 631.01 | 9,31E+03 | 5.60E+01 | N/A | 4.0E-01 | | 108872 | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4.23E-01 | 25 | 1,296 | 373.90 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | 1634044 | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 25 | 1,324 | 328.36 | 497.11 | 3.84E+01 | 5.10E+04 | N/A | 3.0E+00 | | 75092 | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510.00 | 1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | 127184 | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | 108883 | Toluene | 8.70E-02 | 8.60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | 591.79 | 1,82E+02 | 5.26E+02 | N/A | 4.0E-01 | | 156605 | trans-1,2-Dichloroethylene | 7.07E-02 | 1.19E-05 | 9.39E-03 | 25 | 1,333 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | N/A | 2.0E-01 | | | Trichlomethylene | 7,90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | 1.1E-04 | 4.0E-02 | | | Vinyl chloride | 1.06E-01 | 1.23E-05 | 2,71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2.76E+03 | 8.8E-06 | 1.0E-01 | | 1330207 | | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | 1.0E-01 | | | Acetophenone | 6.00E-02 | 8.73E-06 | 1.02E-05 | 25 | 1,214 | 475,00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | | Naphthalene | 5.90E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | 761,01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793.65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2.80E-04 | 25 | 1,118 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | | | Acenaphthene | 4,21E-02 | 7.69E-06 | 1.55E-04 | 25 | 12,155 | 550.54 | 803.15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | | Fluorene | 3.63E-02 | 7.88E-06 | 9.41E-08 | 25 | 12,666 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | | Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873,00 | 2.95E+04 | 4.34E-02 | N/A | 3 0E-03 | | 9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1.00E-05 | 1.66E+00 | 25
25 | 13,121
NA | NA | 873,00
NA | 6.80E+05 | 1.00E+01 | N/A | 2 0E-03 | | 11-C22 | C11-C22 Aromatics | 6.00E-02 | 1,00E-05 | 7.32E-04 | 25
25 | NA NA | NA
NA | NA
NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | 5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA
NA | NA NA | NA NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-02 | | 3-C0
3-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA
NA | NA
NA | NA
NA | 1.78E+03 | 5.10E+04 | N/A
N/A | 5.0E-02 | | | | | 1 1.000=00 | 1 7.826-03 | . ∠o l | INA. | I IVA | I IVA | 1 1/85+03 | 1 3.10E+U4 | I IV/A | , 3 DE-UZ 1 | Appendix C, A Johnson A Elfinger Model - Calculations Screen Inheliation of Velatiles from Geoundwiser Fruiter Chief Recreational Scenario - RME Southwest Prefer, Welle G&H Superfund Stee Abertons Auto Parts Abertons Auto Parts | | Source-
building
separation, | Vadovo
Zone soli
air-filled
pozneity, | Vertices zon
effective
total fluid
esturation, | Vadose zone soli intrinsic permeability, | Vacione zone
soli
relative sir
permeability. | Vations spins
will
effectlys vacor
permeability. | Thickness of
capillary
zone, | Total
porosity in
capitary
zone, | Air-filled
porosity in
capillary
zone, | Winter-filled
occountry in
capillary
zone. | Rose-
wall
seam | Bidg.
ventilation | Area of
enclosed
apace
below | Crack-
lo-lotal
area | Crack
depth
below | Enthalpy of
vaporization at
ave groundwater | Henry's law
constant at
ave. groundwater | Henry's law
constant at
vs. groundwat | Vapor
viscosity at
svs. soil | |---|------------------------------------|--|---|--|---|---|------------------------------------|---|---|---|-----------------------|----------------------|---------------------------------------|----------------------------|-------------------------|---|--|---|------------------------------------| | | Lr | 9.* | 8. | k, | k _{ee} | k, | | Der. | e., | S.a | berimeler,
Xerack | TEE4, | talado, | retto, | aredo, | imperature, | torcordure, | temperature, | temperature, | | | (cm) | (cm'/cm') | (cm³/cm³) | (cm²) | (cm²) | (¢m²) | (cm) | (cm²/cm²) | (cm²/cm²) | (cm³/cm³) | | (cm ³ /e) | Ag
(cm²) | | Z | م⊢ل س | Hra | Нtы | μm | | 71556 1,1,1-(richkrowthurse | | | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 | fact som 1 | (Eq.) | (CHI 76) | (cm.) | (unitiess) | (Cm) | (ca/moi) | (adm-m³/mc/) | (unitiese) | (g/cm-s) | | 76131 Trichioro-1.2.2-Inflourostrume, 1.1.2- | 57,6 | 0.130 | 0.660 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0.43 | 0.127 | 0.303 | 3.015.04 | 1,81E+07 | | | | - | | | | | 79005 1,1,2-Trichloroethene | 67.8 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | J.DIE+A | 1.81E+07 | 5.6/E40/ | 5.31E-05 | . 15 | 7,885 | 8.50E-03 | 3.66E-01 | | | 75343 1.1-Dichlomethane | 67.6 | 0.130 | 0.659 | 1.626-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.015+04 | 1.81E+07 | 0.075-07 | 5.31E-05
5.31E-05 | 15 | 1,436 | 4,55E-01 | 1.96E+01 | | | 75354 1,1-Olchig cetrylena | 67.6
67.5 | 0.130 | 0.650 | 1.62E-08 | 0.390 | <u>5,3</u> 3,5-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.07E-07 | 5.31E-05
5.31E-05 | 15 | 9,572 | 3,885-04 | 1.675-02 | 1.7SE-04 | | 120821 1,2,4-Trichiorabenzene | 67.6 | 0,130 | 0,659
0,659 | 1.52E-08 | 0,390 | 6.33E-09 | 18.75 | 0,43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.07E+07 | 5,31E-05 | | 7,450 | 2.88E-03 | 1.245-01 | 1.75E-04 | | 95601 1.Z-Dichlorobertzene | 67.6 | 0.130 | 0.659
D.659 | 1.62E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | | 3.01Fe/14 | 1815+07 | E 07E-07 | 5,31E-05 | 15 | 6,392 | 1.47E-02 | 6,34E-01 | 1.76E-04 | | 541731 Dichlorobenzene, 1.3- | 67.6 | 0.130 | 0.650 | 1.62E-08 | D.390 | 5,33E-09 | 18.75 | 0.43 | 0,127 | 0.303 | 3.01F+04 | .1.816+07 | 5.67E+07 | 5.31E-05 | 15 | 13,230 | 4.35E-04 | 1.87E-02 | 1,75E-04 | | 106467 1,4-Dichlorobenzene | 67.5 | 0.130 | 0.669 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.61E+07 | 5.875+07 | 5.31E-05 | 15 | 1,521 | 1,41E-06 | 6.09E-05 | 1.75E-04 | | 76933 Butanone, 2- (MEHC) | 67.0 | 0,130 | 0.669 | 1.62E-08 | 0.390 | 6,33E-09 | 16,75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,503
11,243 | 4.11E-03 | 1.77E-01 | 1,75E-04 | | 67541 Acetone | 87.6 | 0.130 | 0,009 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | 0.303 | 3.01E+04 | 1.61E+07 | 5.67E+07 | 5,31E-05 | 15 | 1,486 | 8.69E-04
4.90E-05 | 3.83E-02
2.11E-03 | 1.75E-04
1.75E-04 | | 71432 Benzene | 67.6 | 0.130 | 0.669 | 1.62E-08 | 0.390 | 1,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1 B1E+07 | 5.87E+07 | 5.31E-05 | 16 | 7,569 | 1 97E-05 | 0.50E-04 | | | 74839 Bromomethane | 67.6 | 0.130 | 0.660 | 1.02E-08 | 0.390 | 6.33E-09 | 18,75 | 0,43 | 0:127 | 0.303 | 3.01E+04 | 1.51E+07 | 5.67E+07 | 5.31€-05 | 15 | 5,122 | 2.69E-03 | 1,18E-01 | 1.75E-04
1.75E-04 | | 78160 Certon Disulfide | 67.6 | 0.130 | 0.550 | 1,62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.316-05 | 16 | 1,337 | 5.52E-03 | 2.38E-01 | 1.75E-04 | | 108907 Chloropenzene | 67.6 | 0.130 | 0.659 | 1.02E-08 | 0,390 | 6,33E-09
6,33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.87E+07 | 5.31E-05 | 15 | 6.662 | 5.99E-03 | 3.01E-01 | 1.75E-04 | | 75003 Ethyl Chloride | 67.6 | 0.130 | 0.659 | 1.62E-G8 | 0,390 | | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31F-05 | 15 | 9,803 |
1.54E-03 | 6.65E-02 | 1.75E-04 | | 67663 Chicroform | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6,33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3 01E+04 | 1.81E+07 | 5 57É+07 | 31F-05 | 15 | 1201 | 7.79E-03 | 3,35E-01 | 1,75E-04 | | 155592 cia-1,2-Dichloroethylene | 57.6 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 7,654 | 1.565-03 | 8.02E-02 | 1.75E-04 | | 110827 Cyclohagne | 67.6 | 0.130 | 0.650 | 1.62E-01 | 0,390 | 5.336-09
6.336-09 | 18.75
18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-06 | 15 | 7,734 | 2.04E-03 | 8,77E-02 | 1,75E-04 | | 100414 Ethilbenzene | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 6.31E-05 | 15 | 1.486 | 1.76E+00 | 7.54E+01 | 1.75E-04 | | 98828 (ecoropythenzene | 67.6 | 0,130 | 0.650 | 1.62E-08 | 0.390 | 6.33E-09 | 10.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 10,155 | 3.18E-03 | 1.37E-01 | 1.75E-04 | | 108872 Methyl cyclohecene | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | 0,303 | 3.01E+04 | 1.61E+07 | 5,67E+07 | 5.31E-05 | 15 | 1,540 | 1.28E-02 | 5.51E-01 | 1,75E-04 | | 1634044 Methyl-Tentary-Butyl Ether | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81€+07 | 5.67E+07 | | 15 | 1,505 | 3.70E-01 | 1.59E-01 | 1.75E-04 | | 75092 Methylene chicride | 67.6 | 0.130 | 0.850 | 1.62E-08 | 0.300 | 6.33E-09 | 18.75 | 0.43 | D,127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.87E+07 | 5.316-05 | 15 | 1,447 | 5.16E-04 | 2.22E-02 | 1,75E-04 | | 127154 Tetrachicrosthiane
198883 Tokume | 67,6 | 0.130 | 0.650 | 1.62E-08 | 0.300 | 6.33E-09 | 15.75 | 0.43 | 0,127 | 0.303 | 3.01E+04 | 1 81E+Q7 | 6.67E+07 | 5.31E-05 | 15 | 7,034 | 1.17E-03 | 5.03E-02 | 1.756-04 | | | 67,6 | 0.130 | 0.656 | 1.62E-08 | 0.350 | 6.33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 181E+07 | 5.07E+07 | 5,31E-06 | 15 | 9,553 | 7,83E-03 | 3.37E-01 | 1.75E-04 | | 158605 trans-1,2-Otchlorostwiene | 67.6 | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.07E+07 | 5.31E-05 | 15 | 9,154 | 2.02E-03 | 1.26E-01 | 1.75E-04 | | 79016 Trichioroethylene
75014 Vinyl chloride | 67,6 | 0.130 | 0.859 | 1.52E-08 | 0,390 | 5,33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1,81E+07 | 5.67E+07 | 5,31E-05 | 15 | 1,A17 | 8.27E-03 | 3.66E-01 | 1.75E-04 | | 1330207 Xylenes | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | B,33€-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3,01E+04 | 1.81E+07 | 5.07E+07 | | 15 | 8,557 | 4.79E-03 | 2.06E-01 | 1.75E-04 | | 96602 Acetophenone | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0,390 | 5,33E-09 | 18.75 | 0.43 | 0.127 | | 3.012-04 | 1.51E+07 | 5.67E+07 | 5.31E-05 | 15 | 5,000 | 1.73E-02 | 7.45E-01 | 1.76E-04 | | 91203 Naphthelene | 67,6 | 0.130 | D.659 | 1.62E-08_ | 0.390 | 6.33E-59 | 18.75 | 0.43 | 0.127 | | 3.01E+04 | 1.815+07 | 5.67E+07 | 5.31E-05 | 15 | 1,542 | 6.86E-06 | 2.52E-04 | 1.75€ 04 | | 91576 Matrylnaphthalone, 2- | 57.6 | D.130 | 0.659 | 1.62E-08 | 0,390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3 0 1E+04 | 1.81E+07 | 5.67E+07 | | 15 | 1,518 | 8.91E-06 | 3.83E-04 | 1.75E-04 | | 62624 Bloharyt, 1,11- | 67.5 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E=04 | 1.81E+07 | 5.6/E-07 | 5 31E-05 | 15 | 12,913 | 1.52E-04 | 6 65E-03 | 1.75E-04 | | 208968 Acenaph Sylene | 67.6 | 0,130 | 0,659 | 1.62E-08 | 0,390 | 5.33E-09 | 18.75 | D.43 | 0.127 | 0.303 | 301E-04 | 1.81E+07
1.81E+07 | 5,67E-07 | 5 31E-05 | 15 | 1,506 | 8.86E-04 | 3.81E-02 | 1.75E-04 | | 63329 Aconsphilene | 57.4 | 0.130 | 0,669 | 1.62E-08 | 0,390 | 6.33E-09 | 10.75 | 0.43 | 0.127 | 0.303 | 3.V1E+04 | 1.81E+07 | S 67E+07 | | 16 | 1,472 | 2,66E-04 | 1.14E-02 | 1.75E-04 | | 86737 Fluorens | 67.8 | 0.130 | 0.659 | 1.6ZE-08 | 0.390 | 4.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 301E+04 | 1.81E+07 | 5.67E 407 | 5.31E-05 | 15 | 1,613 | Z45E-04 | 1.05E-02 | 1,75E-04 | | 85018 Phonontypre | 67.6 | 0 130 | 0.659 | 1,62E-06 | 0,390 | 6,33E-09 | 18,75 | 0.43 | 0.127 | | 301E40 | 1.81E+07 | 5.67E+07 | 5,31E-05 | 15 | 15,123 | 3.67E-05 | 1.58E-03 | 1.75E-04 | | 120127 Antivacene | 67.6 | 0.130 | 0,650 | 1.62E-08 | 0.390 | 4.33E-09 | 18.75 | 0.43 | D.127 | 0,303 | 301E40 | 1,81E+07 | 3.0/E+0/ | 5.31E-05 | 15 | 16,235 | 2.20E-08 | 9.48E-07 | 1.75E-04 | | CS-C18 CS-C18 Allohatics | 67.6 | 0.130 | 0.656 | 1,62E-08 | 0.350 | 6.33E-09 | 18.76 | 0.43 | 0,127 | | 30 Fe/14 | 1,81E+07 | 5.0/E-07 | 6.31E-05 | - 15 | 1,479 | 1.145-54 | 4.90E-03 | 1.75E-04 | | C11-G22 C11-C22 Aromatica | 57,6
57,6 | 0.130 | 0.550 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-US | 15 | 18,353 | 1.29E-05 | 5.43E-04 | 1.75E-04 | | C5-G8 C5-G8 Allehatica | 67.8 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 8.33E-09 | 18.75 | 0.43 | 0.127 | | 3.01E+04 | 1.81E-07 | 5.57E+07 | 6.31E-05 | 15 | NA . | B.28E-01 | 3.68E+01 | 1.75E-04 | | C9-C10 C9-C10 Arematica | 67.6 | 0.130
0.130 | 0.659 | 1,62E-08 | 0.390 | 5.11E-09 | 18,75 | 0.43 | 0.127 | | 301E+04 | 1815+07 | 6.475407 | 5.31E-05
5.31E-05 | . 15
16 | NA . | 3.60E-04 | 1.55E-02 | 1.755-04 | | CS-C12 CS-C12 Allohatics | 67.6 | | 0.659 | 1,625-08 | 0.390 | 6.33E-09 | 18.76 | 0.43 | 0.127 | | 3.01E+04 | \$ 81E+07 | 5.07E+07 | 431E 05 | | NA. | 6.48E-01 | 2.79E-01 | 1.75E-04 | | | 1 01.6 | D.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | | 3.01E+04 | | 5.67E+07 | 6.31E-05 | 15
15 | HA
HA | 3.96€-03 | 1.70E-01
3.36E+01 | 1.75E-04 | Apprendix C.A. Johnson & Effencer Model - Calculations Screen Inhibitation of Volatilise from Groundwater Future Critic Recreational Screenio- RME Southness Provides, Walls G&H Superfund Stee, Operable Unit 2 Aberjons Auto Partie | | | Vadore zone
effective
diffusion
coefficient. | Capillary
2019
effective
diffusion
coefficient,
D ^{eff} er | Yotal overell affective diffusion coefficient, | Diffusion
path
langth, | Convection
path
length, | Source
yapar
conc | Crack
radius. | Average
Vapor
flow rate
into bidg.,
C _{tot} | Crack
affective
diffusion
coefficient,
press. | Area of crack. | Exponent of
equivalent
foundation
Paciet
number.
exp(Pe ^f) | infinite
source
index
attenuation
coefficient | infinite
source
bida,
conc., | Unit
(lek
factor,
URF | Reference
conc., | |----------|---|---|--|--|------------------------------|-------------------------------|-------------------------|------------------|--|---|----------------|--|---|---------------------------------------|--------------------------------|---------------------| | | | (cm²/a) | (cm²(s) | (cm /e) | (cm) | (cm) | (ma/m ₂) | (cm) | (cm ³ /a) | (cm ² /n) | (cm²) | (urutiess) | (unidess) | (my/m²) | (jg/m ²) 1 | (mg/m³) | | | | (CII 79) | (Self-14) | (\$1,10) | City | TOTAL . | | 12 | 14 | | | | | | | | | 7-556 1 | 1.1Trichlorcethane | 4.76E-04 | 4.45E-04 | 4.66E-04 | 67.6 | 15 | N/A | 0.10 | 1 4.79E+01 | 4,75E-04 | 3 01E+03 | 1.216+216 | 2.36E-06 | N/A | NVA | 2.2E+00 | | | Trichloro-1,2,2-frificuroethene, 1,1,2- | 175E-04 | 1.63E-04 | 1.71E-04 | 67.B | 15 | N/A | 0.10 | 4.79E+D1 | 1,75E-04 | 3.01E+03 | #NUM! | 1.98E-06 | N/A | N/A | 3.0E+01 | | | 1,1,2-Trichloroethene | 5.246-04 | 4.95E-04 | 6.18E-04 | 67.8 | 16 | N/A | 0.10 | 4.79E+01 | 5,24E-04 | 3.01E+03 | 3.42E+197 | 2.38E-06 | N/A | | 2.25+00 | | 75143
| 1.1-Dichlorosthane | 4.58E-04 | 4.29E-04 | 1.50E 01 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 4.58E-04 | 3.01E+03 | 1.55E+226 | 2.35E-06 | N/A | N/A | 5.0E-01 | | | 1.1-Dichioroethylene | 5.47E-64 | 5.12E-04 | 6.37E-04 | 87.6 | 15 | 6 71E+01 | 0.10 | 4.79E+01 | 5,47E-04 | 3,01E+03 | 2.46E • 189 | 2 39E-06 | 1.60E-04 | 14/A | 2.0E,-01 | | *2087111 | 2.4-Trichloroberzene | 2.26E-04 | 2.14E-04 | 2.22E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 2.25E-04 | 3.01E+03 | #NUM! | 2 1DE-06 | N/A | N/A | 2.0E-01 | | 955/11 1 | 2-Dichiorobenzane | 1.56E-02 | 1.60E-02 | 1.57E-02 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 1,50E-02 | 3,01E+03 | 4 41E+06 | 2 64E-06 | N/A | N/A | N/A | | | Dichlorobenzene, 1.3- | 2.56E-04 | 2.40E-04 | 2,51E-04 | 57.6 | 15 | N/A | 0.10 | 4.79E+01 | 2.55E-04 | 3,01€+03 | ANUM | 2.16E-00 | N/A | N/A | N/A | | | 4-Dichlorobenzene | 4.386-04 | 4,12E-04 | 4.31E-04 | 67.6 | 15 | 1.79E+01 | 0.10 | 4 79E+01 | 4.38E-04 | 3.01E+03 | 2.05E+236 | 2 34E-06 | 4.19E-05 | NA | 8,0E-01 | | | Butanone, 2- (MEK) | 9.45E-04 | 9.27E-04 | 9.40E-04 | 67.6 | 16 | N/A | 0.10 | 4 79E+01 | 9.45E-04 | 3,01E+03 | 3.81E+109 | 2.49E-05 | N/A | N/A | N/A | | 67641 | | 2.07€-03 | 2.06E-03 | 2.07E-03 | 87,5 | 15 | N/A | 0,10 | 4 79E+01 | 2.07E-03 | 3.01E+03 | 1.22E+60 | 2,57E-08 | NA. | N/A | N/A | | 71432 8 | | 5.42E-04 | 6,97E-04 | 5.32E-04 | 67.6 | 15 | 3.02E+01 | 0.10 | 4.79E+01 | 5,42E-04 | 3,01E+03 | 1 94E+191 | 2.39€-06 | 7.22E-05 | 7.8E-08 | | | | Bromomethene | 4,40E-04 | 4.18E-04 | 4.38E-04 | 67.6 | 15 | NA | 0.10 | 4.79E+01 | 4.46E-04 | 3.01E+03 | 1.58E+232 | 2.34E-06 | N/A | NA | 6.0E-03 | | | Carbon Disuffice | 6.34E-04 | 5.94E-04 | 6 23E-04 | 67.5 | 16 | N/A | 0.10 | 4.79E+01 | 6.34E-04 | 3.01E+03 | 1.95E+163 | 2.42E-05 | N/A | NA | 7.0E-01 | | | Chiorabenzene | 4.55E-04 | 4.27E-04 | 4.47E-04 | 67.6 | 15 | NVA | 0.10 | 4.79E+01 | 4,65E-04 | 3.01E+03 | 3.77E+227 | 2.35E-08 | N/A | N/A | 6.0E-02 | | | Ethyl Chloride | 7.68E-04 | 7 18E-04 | 7.51F-04 | 67.6 | 13 | N/A | 0.10 | 4.79E+01 | 7.66E-04 | 3.01E+03 | 2 20E+135 | 2,46E-06 | N/A | N/A | 1.0E+01 | | | Chloroform | 6.43E-04 | 6.02E-04 | 0 31E 04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 6.43E-04 | 3.01E+03 | 1 77E+151 | 2.43E-06 | N/A | 2.3E-05 | 5 DE-02 | | | cis-1.2-Dichloroethylene | 4.59E-04 | 4.30E-04 | 4.60E-04 | 67.6 | 16 | 2.54E+03 | 0.10 | 4.79E+01 | 4,69E-04 | 3 01E+03 | 7.48E+225 | 2,35E-06 | 5.97E-03 | N/A | 2 0E-01 | | | Cycloheume | 4.85E-04 | 4 53E 44 | 4.76E-04 | 67.6 | 16 | N/A | 0.10 | 4.79E+01 | 4.85E-04 | 3 01E+03 | 4.89E+213 | 2.35E-06 | NVA | #N/A | MIVA | | | | 4.60E-04 | 4.31E-04 | 4.52E-04 | 67.6 | 16 | N/A | 0.10 | 4.79E+01 | 4.60E-04 | 301E+03 | 1.47E+225 | 2.35E-06 | N/A | N/A | 1.0E+00 | | | Etylongere | 3 95E-04 | 3 70E-04 | 3.66E-04 | 97.6 | 15 | N/A | 0.10 | 4.79E+01 | 3,95E-04 | 3.01E+03 | 1.24E+262 | 2.31E-06 | N/A | N/A | 4.0E-01 | | | aopropy/benzane | 5 96E-04 | 5.59E-04 | 5.86E-04 | 67.6 | 15 | N/A | 0.1D | 4,79E+01 | 5.88E-04 | 3.01E+03 | | 2.41E-06 | N/A | N/A | 3.0E+00 | | | Methyl cyclohaxane | 5 VOE-U4 | 6.28E-04 | 6.66E-04 | 67.5 | 15 | 3.11E+02 | 0.10 | 4.79E+01 | 8.67E-04 | J.01E+03 | 2,13E+155 | 2.43E-06 | 7.58E-04 | N/A | 3.0E+00 | | | Methyl-Terbary-Butyl Ether | 6.35E-04 | 5.96E-04 | 6.24E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 6,35E-04 | 3.01E+03 | | 2 42E-06 | N/A | 4 7E-07 | | | | Methylene chloride | 4.39E-04 | 4.11E-04 | 4.31E-04 | 67.6 | 15 | 1 41E+02 | 0.10 | 4.79E+01 | 4.39E-04 | 3.01E+03 | | 2.34E-00 | 3.29E-04 | 5.9E-08 | | | | Tetrachlorpethylene | | 5.00E-04 | 5.24E-04 | 67.6 | 16 | N/A | 0.10 | 4.79E+01 | 5 34E-04 | | 1.08E+194 | 2 39E-00 | N/A | N/A | 4.0E-01 | | 108883 | | 5,34€-04 | | 4.24E-04 | 67.8 | 15 | N/A | 0.10 | 4.79E+01 | 4.32E-04 | 2015403 | 0.26E+239 | 2.33E-05 | N/A | IVA | 2.0E-01 | | | trans-1,2-Dichlorosthylene | 4.32E-04 | 4,04E-04 | | | 1 15 | 5.16E+03 | 0.10 | 4.79E+01 | 4.83E-04 | 3,01E+03 | | 2.36€-06 | 1.22E 02 | T IE-04 | | | | Trichioroethylene | 1,83E-04 | 4.52E-04 | 4,74E-04 | 67,6 | 13 - | 1.62E+02 | 0.10 | 4 79E+01 | 6 44E-04 | 3,015-03 | 7.47E+160 | 2.435-06 | 3.93E-04 | 8.8E-05 | | | | VIm/I chicride | 6,44E-04 | 6.02E-04 | 5.32E-04
3.77E-03 | 57.6 | | | 0,10 | 4.79E+01 | 3.75E-03 | 30,500 | 4.33E+27 | 2.61E-06 | N/A | NVA | 1.0E-01 | | 1330207 | | 3.75E-03 | 3.81E-03 | | 67.6 | 15 | N/A | | 4 79E+01 | | 3.01E+0.1 | | 2.59E-06 | N/A | N/A | N/A | | | Acetophenone | 2. 0 0E-03 | 2.64E-03 | 2.61E-03 | 67.6 | 15 | NA. | 0.10 | | 2.60E-03 | | | 2,36€-06 | 4 17E-05 | N/A | 3.0E-03 | | | Naphthalene | 4.70E-04 | 4.50E-04 | 4.64E-04 | 57,6 | 15 | 1,77E+01 | 0.10 | 4 79E+01 | 4 70E-04 | 3,01E+03 | | 2.23E-06 | N/A | N/A | 3.0E-03 | | | Metrykraphthalerie, 2 | 3.13E-04 | Z 95E-04 | 3,08E-04 | 67.6 | 16 | N/A | 0.10 | 4.79E-01 | 3,13E-04 | 3.01E+03 | | 2.246-00 | N/A | NVA . | N/A | | | Sipheryl, 1,1'- | 3,16€-04 | 3,01E-04 | 3.11E-04 | 67,6 | 15 | N/A | 0.10 | 4.79€+01 | 3.15E-04 | 3 0 1E+03 | PRODUCTION OF THE O | | N/A | N/A | 3.DE-03 | | | Acemphthylene | 3.38E-04 | 3.22E-04 | 3.33E-04 | 57.5 | . 15 | N/A | 0.10 | 4.79E-01 | 3.38E-04 | | 7.70E+308 | | N/A | N/A | 3.0E-03 | | | Acomorphismo | 7,33E-04 | 7.31E-04 | 7.33E-04 | 97.6 | 16 | N/A | 0.10 | 4.79E-01 | 7.335-54 | | 835+141 | 2.45E-06 | NA | N/A | 3.0E-03 | | | Fluorena | 6.16E-01 | 8 39E-01 | 8 22E-01 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 8,16E-01 | 3.01E+03 | | 1.04E-06 | 2 34E-05 | N/A
N/A | 3.0E-03 | | 85015 | Physionhore | 3.50E-04 | 3 41E-04 | 3.476-04 | 67,6 | 15 | 1,03E+01 | 0.10 | 4.79E+01 | 3,50E-04 | 3,012-03 | | | | | 3.0E-03 | | | Anthracone | 1.50E-03 | 62E-03 | 1,60€-03 | 97.8 | 15 | N/A | 0.10 | 4.79E+01 | 1,605-03 | 3.01E+03 | 8 67E+64 | 2.55E-05 | N/A | N/A | | | C9-C18 | C9-C18 Aliphatics | 3.64E-04 | 3 40E-04 | 1.57E-04 | 67,6 | 15 | N/A | 0.10 | 4.79E+01 | 3.64E-04 | 3,01E+03 | | 2.25E-09 | N/A | N/A | 2.0E-01 | | | C11-C22 Arometics | 4 27E-04 | 4.05E-04 | 4.21E-04 | 67.6 | 15 | NA | 0,10 | 4.79E+01 | 4.27E-04 | | 4.50E+242 | | N/A | N/A | 5.0E-0Z | | | C6-C8 Alphetics | 3.54E-04 | 3,40E-04 | 3,67E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.64E-04 | | 7,91E+284 | 2.28E-05 | N/A | N/A | 2.0€-01 | | | C9-C10 Arometics | 3.69E-04 | 3 46E-04 | 3.63E-04 | 67.6 | 15 | . N/A | 0.10 | 4.79E+01 | 3,69€-04 | | 3.04E+280 | 2.29E-00 | N/A | N/A | 5 0E-02 | | | C9-C12 Allphatics | 3 64E-04 | 3.40E-04 | 3.57E-04 | 67.6 | 16 | N/A | 0.10 | 4.79E+01 | 3,64E-04 | 3.01E+03 | 7.99E+284 | 1.26E-08 | N/A | N/A | 2.0€-01 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Tuture Child Recreational Scenario - RME Huthwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Derjona Auto Parts #### RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: ## INCREMENTAL RISK CALCULATIONS: | | | Indoor
exposure
groundwater
conc.
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure component water solubility, S (µg/L) | Finat
Indoor
exposure
groundwater
conc.,
(µg/L) | | incremental
risk from
vapor
Intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---------|---|--|--|--|---|--|------|--|--| | 71556 | 1,1,1-Trichloroethane | NA NA | NA. | NA | 1.33E+06 | N/A | ۱۱ ا | NA NA | NA | | | Trichloro-1,2,2-triffouroethane, 1,1,2- | NA . | NA | NA | 1.70E+05 | N/A | | NA | NA NA | | | 1,1,2-Trichloroethane | NA | NA. | NA | 4.42E+06 | N/A | | NA NA | NA | | | 1,1-Dichloroethane | NA | NA | NA. | 5.06E+06 | N/A | | NA | NA | | • | 1,1-Dichloroethylene | NA | NA | NA | 2.25E+06 | N/A | | NA | 1.8E-08 | | | 1,2,4-Trichlorobenzene | NA | NA. | NA | 3.00E+05 | N/A | | NA | NA. | | | 1,2-Dichlorobenzene | NA | NA. | NA | 2.77E+07 | N/A | | NA | NA NA | | | Dichlorobenzene, 1,3- | NA | NA | NA | 6.88E+04 | N/A | | NA | NA | | [| 1,4-Dichlorobenzene | NA | NA. | NA | 7.38E+04 | N/A | | NA | 1.2E-09 | | | Butanone, 2- (MEK) | NA | NA | NA | 2.23E+08 | N/A | | NA | NA 1 | | | Acetone | NA | NA | NA | 1.00E+09 | N/A | | NA | NA | | | Benzene | NA | NA. | NA NA | 1.75E+06 | N/A | | 1.1E-12 | 5,4E-08 | | | Bromomethane | NA | NA. | NA | 1.52E+07 | N/A | | NA | NA. | | i | Carbon Disulfide | NA | NA. | NA | 2.67E+06 | N/A | | NA | NA NA | | 108907 | Chlorobenzene | NA | NA | AN | 4.72E+05 | N/A | | NA | NA. | | | Ethyl Chloride | NA | NA | NA | 5.32E+06 | N/A | | NA | NA | | | Chloroform | NA | NA | NA | 7.92E+06 | N/A | | NA | NA. | | | cis-1,2-Dichloroethylene | NA | NA | NA | 3.50E+06 | N/A | | NA | 6.6E-07 | | | Cyclohexane | NA | NA. | NA | 5.50E+04 | N/A | 1 | NA | NA | | | Ethylbenzene | NA NA | NA. | NA | 1.69E+05 | N/A | | NA NA | NA NA | | | Isopropylbenzene | NA | NA | NA | 5.60E+04 | N/A | • | NA | NA | | | Methyl cyclohexane | NA | NA | NA | 1.40E+04 | N/A | | NA | NA | | | Methyl-Tertiary-Butyl Ether | NA | NA. | NA | 5.10E+07 | N/A | | NA | 5.6E-09 | | | Methylene chloride | NA | NA NA | NA | 1.30E+07 | N/A | | NA | NA. | | | Tetrachloroethylene | NA | NA. | NA. | 2.00E+05 | N/A | | 3.7E-12 | NA. | | | Toluene | NA | NA | NA | 5.26E+05 | N/A | | NA | NA | | | trans-1,2-Dichloroethylene | NA | NA. | NA. | 6.30E+06 | N/A | | NA | NA. | | | Trichloroethylene | NA | NA | NA | 1.10E+06 | N/A | | 2.6E-09 | 6.8E-06 | | | Vinyl chloride | NA | NA | NA. | 2.76E+06 | N/A | | 6.6E-12 | 8.8E-08 | | 1330207 | · · · · · · · · · · · · · · · · · · · | NA | NA | NA | 2.20E+05 | N/A | | NA NA | NA | |
| Acetophenone | NA | NA | NA | 6.13E+06 | N/A | | NA . | NA | | | Naphthalene | NA | NA | NA. | 3.10E+04 | N/A | | NA | 3.1E-07 | | | Methylnaphthalene, 2- | NA | NA | NA | 2.46E+04 | N/A | | NA | NĄ | | | Biphenyl, 1,1'- | NA | NA . | NA. | 6.94E+03 | N/A | | NA | NA NA | | | Acenaphthylene | NA | NA | NA. | 3.93E+03 | N/A | | NA | NA . | | | Acenaphthene | NA | NA | NA | 4.24E+03 | N/A | | NA | NA | | | Fluorene | NA | NA | NA | 1.90E+03 | N/A | | NA | NA | | 85018 | Phenanthrene | NA | NA | NA | 1.28E+03 | N/A | | NA | 1.7E-07 | | 120127 | Anthracene | NA | NA. | NA | 4.34E+01 | N/A | | NA NA | NA NA | | C9-C18 | C9-C18 Aliphatics | NA | NA | NA | 1.00E+04 | N/A | | NA | NA | | C11-C22 | C11-C22 Aromatics | NA: | NA | NA | 5.80E+06 | N/A | | NA . | NA NA | | C5-C8 | C5-C8 Aliphatics | NA | NA | NA | 1.10E+07 | N/A | | NA . | NA NA | | C9-C10 | C9-C10 Aromatics | NA | NA | NA . | 5.10E+07 | N/A | | NA NA | NA | | C9-C12 | C9-C12 Aliphatics | NA NA | NA | NA. | 7.00E+04 | N/A | 1 | NA | NA. | 95% UCL Cancer 95% UCL Risk HI TOTAL: 3E-09 8E-06 = Cancer risk > 1E-05 or HQ/HI>1E+00 | Appendix G.4 |--|---|--------------------------|--------------------------|----------------------|----------------|-----------------------|-------------------|------------------------|--------------------------|---------------------------|----------------------------------|--------------------------|---------------------------------|-------------------------|-----------------------------|-----------------------|---------------------|-----------|---------------------| | Johnson & Ettinger Mod
Inhabition of Volatiles for
Future Child Recreation | om Groundwater | uri S | | | | | | | | | | | ······ | | | | | | | | CALCULATE RISK-RA | SED GROUNDWATER CONCENTR | ATION (man - 107) | PF hard | A HOLK HALLON, Y. IV JAE | ra. ocst) | | | | | | | | | | | | | | | | | | | YES | C11 61 1 1 TE 1110 DELL | OR | (white "X" in "YES" box | ENTAL RISKS FROM ACTUAL GRO
and Invital groundwater conc. below) | UNDWATER CONCEN | TRATION | | | | | | | | | | | | | | | | | | | YES X | | EN7ER | ÉNTER | | | | | | | | | | | | | | | | | | ^ | | Depth | ENTER | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | ENTER | Errier Initial orour | ENTER
95% UCL | below grade | | | Average | Vadose zone | Geer-define | | ENTER | Chemical | Communicate charge | groundwater | le bettem
of enclosed | Depth
below grade | 306 | ecil/
provendwater | SCS
and type | vedose zon
soj vego | P Vadose zone
ecf dry | Vadose zone
eoil lotal | Vadose zone
soil water-filled | Teroet | Terpel hezard | Averaging | Averaging | | | | | | CAS No. | | conc. | epace floor, | lo water table, | soil (VDe | lerreperal, tre, | (used to estimate | OR permeability | | perceity. | peropity. | risk for
carcinogans, | quotient for
noncercinogens, | time for
caronogena, | time for
monoarcinogena, | Exposure
duration, | Exposure frequency. | Exposure | Coversion
factor | | (numbers only, | G 1 | C _w | با | LWT | directly above | T∎ | soli vapor | k | e, [∨] . | n ^v | a_v | TR | THO | AT _c | ATMC | ED | £F. | ET | QF. | | no dashee) | Chemical | (µg/L) | (15 or 200 cm) | (cm) | wyler lable | (°C) | permeability) | Note (cm²) | (g/cm³) | (unitions) | (cm³/cm³) | (gryßeşe) | (unidea y) | (yr=) | (918) | (yr6) | (days/y) | (hrs/day) | (hrø/yr) | | 71566
76131 Tr | 1,1,1-Trichloroethane | | 15 | 82.6 | LS | 10 | LS | 1 | 1.6 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 79005 | tchioro-1.2.2-triflouroethere, 1.1.2-
1.1.2-Trichioroethere | | 15
15 | 52.6
52.6 | LS
LS | 10 | La | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 20 | 25 | 8760 | | 75343 | 1,1-Orchioraethane | | 15 | 82.6 | LS
LS | 10 | LS
LS | | 1.5 | 0.43 | 0.3 | 1.0E-06 | + | 70 | 2 | 2 | 26 | 2.6 | 6760 | | 78364
120821 | 1.1-Dichloroethylene | 1.06E-01 | 15 | 82.0 | LS | 10 | Į3 | 1 | 1.5 | 0.43 | D.3 | 1.0E-06 | + + - | 70 | 2 | | 26
26 | 2.5 | 8760
8760 | | 95501 | 1,2,4-Trichlorobenzene
1,2-Dichlorobenzene | | 15
15 | 52.6
82.6 | <u>\5</u> | 10 | LS | | 1,5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 541731 | Dichiorobenzene, 1.3- | | 15 | 82.6 | LS
LS | 10 | LS | -i | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | 1 | 70 | 2 | | 28 | 25 | 8760
8760 | | 106467
78933 | 1.4-Okhkrobenzene
Butanone, 2- (MEK) | 4.68E-01 | 15 | 82.6 | L\$ | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.3 | 1.05-06 | | 70 | 2 | 2 | 20 | 25 | 8760 | | 67641 | Acetone | | 15 | 82 6
82 6 | ĻS
LS | 10 | LS
LS | | 1.5 | 0 43 | 0.3 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 71432
74839 | Benzene | 2 61E-01 | 15 | 82.6 | LS | 10 | LS | -, | 1.5 | 043 | 0.3 | 1,0E-08
1,0E-06 | 1 | 70 | 2 | | 20 | 25 | 8760
8760 | | 76150 | Brotnomethene
Carbon Digutfide | | 15 | 82.6 | LS | 10 | | | 1,5 | 0.43 | 0.3 | 1.0E-06 | <u> </u> | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 108907 | Chiorobenzene | | 16 | 82.6
82.6 | LS | 10 | LB
LS | 1 | 1,5 | 0.43 | 0.3 | 1,0E-06 | · · · · ! · · · | 70 | 3 | 2 | 26 | 2.5 | 8760 | | 76003
67663 | Ethyl Chloride | | 16 | 92.6 | LS | 10 | ĻŠ | | 1.5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | | 70 | 2 | - 2 | 26 | 2.6 | 8760
8760 | | 156592 | Chloroform
cle-1,2-Dichloroethylene | 6.79E+00 | 16
15 | 82 6
82 6 | LS
LS | 10 | LS | <u> </u> | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | 2 | 2 | 28 | 2.5 | 8760 | | 110827 | Cyclohecune | 4,745-77 | 16 | 82.6 | LS | 10 | LS
15 | 1 | 1,5 | 0.43 | 0.3 | 1,0E-06 | | | 2 | 2 | 26 | 2.6 | 8760 | | 1004141 | Ethylbenzene | | 16 | 82.5 | ĻŞ | 10 | 1.5 | . 1 | 1.5 | 0.43 | 0.3 | 1.05-06 | | 70 | 2 2 | 2 | 26 | 25 | 8760
8750 | | 108872 | leopropytherzene
Methyl cyclohecene | | 15
16 | 82.6 | <u>1.5</u> | 10 | LS | ļ., | 1.5 | 0.43 | 03 | 1.0E-06 | 1 | 70 | 2 | 2 | 26 | 2.5 | 8750 | | 1834044 | Metryl-Tertiary-Bubil Ether | 4.21E+00 | 15 | 82.6 | LS | 10 | L8
LS | + | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | | 70
70 | 2 | | 26 | 2.5 | 3760
3760 | | 75092
127184 | Methylene chicride Tatrachicroshylene | 4.185-01 | 16
15 | 82.5 | LS | 10 | ĻŞ | 1 | 1.5 | 0.43 | 0.3 | 1,0E-06 | 1 | 70 | 2 | 2 | 26 | 25 | 8760 | | 108553 | Taluene | *J95-01 | 15 | 82.6
82.6 | ĻS
LS | 10 | LS
LS | | 1,5 | 0.43 | 0.3 | 1,05-06 | 1 | 70 | - 2 | 2 | 26 | 2.5 | 6750 | | 158905 | trans-1,2-Dichlorosthylene | | 15 | 628 | LS | 10 | is . | | 1,5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 | 70 | - Z | | 26
26 | 2.5 | 8750
8760 | | 79016
75014 | Trichiggethylane
Veryl chloride | 7 51E+00
2.17E-01 | 15 | 62.6 | 18 | 10 | LS | 1 | 1,5 | 0.43 | 0.3 | 1.0E-05 | i | 70 | 2 | 2 | 20 | 2.6 | 8780 | | 1330207 | Xylones | 4,71,527 | 15
16 | 62,6
82.6 | LS
LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.3 | 1,0€-06 | | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 96682
91203 | Acatophenony | | 15 | 82.6 | LS. | 10 | | + | 1,5 | 0.43 | 0.3 | 1,0E-06
1,0E-06 | | 70 | 2 3 | 2 | 26 | 2.5 | 8760
8760 | | 91576 | Machinalene
Metrenaphinalene, 2- | 1.32E+00 | 15 | 82.8
82.6 | L5 | 10 | 1.8 | | 1.5 | D.43 | 63 | 1.0E-06 | 1 1 " | 76 | 2 | 2 | 20 | 2.5 | 8760 | | 92524 | Sipheral, L.P. | | 15 | 82.6 | 18 | 10 | L8
LS | 1 | 1,5 | 0.43 | 0.3 | 1,0E-08 | | 70 | 2 | 2 | 26 | 2.5 | 8760 | | 208968 | Acenachinidene | | 15 | 82.6 | (3 | 10 | ĻS | -i | 1.6 | 0.43 | 0.3 | 1.0E-06 | | | 2 | | 26 | 2.5 | 8760
8760 | | 66737 | Acensphthene
Fluorene | | 15
15 | 52.6
52.6 | <u>LS</u> | 10 | 18 | | 1.5 | 5.43 | 0.3 | 1 0E-08 | 1 | 70 | 2 | ž | 26 | 2.5 | 8760 | | 85018 | Presentivene | 2.10E+00 | 15 | 62.6 | LS | 10 | LS LS | -i | 1,5 | 0.43 | 0.3 | 1.05-01
1.05-01 | 1 1 | 70 | 2 | - 3 | 20 | 2.5 | 8760
8760 | | 120127
C9-C18 | Anthragens
C9-C18 Allehatics | | 15 | 82,0 | L8 | 10 | i.s | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | <u> </u> | . 70 | | - 4 | 26 | 2.5 | 8780 | | C11-C22 | C11-G22 Aromatica | | 15 | \$2.6
52.5 | LS | 10 | LS
LS | 1 | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 79 | . 2 | 2 | | 2.8 | 8760 | | C6-C6
C9-C10 | C5-C8 Aliphetice | | . 15 | 82.6 | | 10 | LS | t | 1.6 | 6.43 | 6.3 | 1,0E-06 | 1 1 | 70 | | 2 | 26 | 2.5 | 8760
8760 | | LW-C10 | C9-C10 Aromatica | | 15 | 82.6 | 15 | 10 | 19 | | 1 4 | A 45 | A | | , : - | | | | 40 | | 6100 | Appendix C.4 Johnson & Ettinger Model - Chemical Properties Screen Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts | | | | | Henry's | Henry's | Enthalpy of | | | Organic | Pure | | | |----------|--|----------------------|----------------|-------------------|--------------|------------------|------------------|------------------|----------------------|-------------|---|----------------------| | | | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | l l | | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | | | in air, | in water, | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | | Chemical | | D _a | D _w | Н | TR | $\Delta H_{v,b}$ | T _B | Tc | Koc | S | URF | RfC | | CAS No. | Chemical: | (cm ² /s) | (cm²/s) | (atm-m³/mol) | (°Ĉ) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | (μg/m ³) ⁻¹ | (mg/m ³) | | CAS NO. | Criemical | (41178) |
(011170) | (auti-iti itiloi) | (0) | (Cautifol) | (/ | 1.7 | (5,11.9) | (111972/ | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 74550 | 4 4 4 Triabless attacks | 7.80E-02 | 8.80E-06 | 1.72E-02 | 25 | 7,136 | 347.24 | 545.00 | 1.10E+02 | 1.33E+03 | N/A | 2.2E+00 | | | 1,1,1-Trichloroethane | 2.88E-02 | 8.07E-06 | 5.17E-02 | 25 | 1,326 | 320.70 | 481.05 | 2.25E+02 | 1.70E+02 | N/A | 3.0E+01 | | | Trichloro-1,2,2-triflouroethane, 1, | 7.80E-02 | 8.80E-06 | 9.12E-04 | 25 | 8,322 | 386.15 | 602.00 | 5.01E+01 | 4.42E+03 | 1.6E-05 | 2.2E+00 | | | 1,1,2-Trichloroethane | 7.42E-02 | 1.05E-05 | 5.61E-03 | 25 | 6,895 | 330.55 | 523.00 | 3.16E+01 | 5.06E+03 | N/A | 5.0E-01 | | | 1,1-Dichloroethane | 9.00E-02 | 1.03E-05 | 2.61E-02 | 25 | 6,247 | 304.75 | 576.05 | 5.89E+01 | 2.25E+03 | N/A | 2.0E-01 | | | 1,1-Dichloroethylene | 3.00E-02 | 8.23E-06 | 1,42E-03 | 25 | 10,471 | 486.15 | 725.00 | 1.78E+03 | 3.00E+02 | N/A | 2.0E-01 | | | 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene | 6.88E-02 | 9.41E-06 | 1.62E-06 | 25 | 1,223 | 465.00 | 697.50 | 5.34E+01 | 2.77E+04 | N/A | N/A | | | Dichlorobenzene, 1,3- | 4.14E-02 | 8.85E-06 | 4.70E-03 | 25 | 1,242 | 446.00 | 683.96 | 1.70E+02 | 6.88E+01 | N/A | N/A | | | 1,4-Dichlorobenzene | 6.90E-02 | 7.90E-06 | 2.43E-03 | 25 | 9,271 | 447.21 | 684.75 | 6.17E+02 | 7.38E+01 | N/A | 8.0E-01 | | | | 8.08E-02 | 9.80E-06 | 5.60E-05 | 25 | 1,311 | 352.50 | 528.75 | 3.83E+00 | 2.23E+05 | N/A | N/A | | | Butanone, 2- (MEK) | | 1.14E-05 | 3,88E-05 | 25 | 6,955 | 329.20 | 508.10 | 5.75E-01 | 1.00E+06 | N/A | N/A | | | Acetone | 1.24E-01
8.80E-02 | 9.80E-06 | 5.56E-03 | 25 | 7,342 | 353.24 | 562.16 | 5.89E+01 | 1.75E+03 | 7.8E-06 | 3.0E-02 | | | Benzene | 7.28E-02 | 1.21E-05 | 6.22E-03 | 25 | 1,362 | 276.50 | 414.75 | 1.43E+01 | 1.52E+04 | N/A | 5.0E-03 | | | Bromomethane | | | 1.27E-02 | 25 | 6,391 | 319.00 | 552.00 | 5.14E+01 | 2.67E+03 | N/A | 7.0E-01 | | | Carbon Disulfide | 1.04E-01 | 1.29E-05 | | 25 | 8,410 | 404.87 | 632.40 | 2.19E+02 | 4.72E+02 | N/A | 6.0E-02 | | | Chlorobenzene | 7.30E-02 | 8.70E-06 | 3.71E-03 | | | | 373.50 | 1.43E+01 | 5.32E+03 | N/A | 1.0E+01 | | | Ethyl Chloride | 1.26E-01 | 6.50E-06 | 8.67E-03 | 25 | 1,355 | 249.00
334.32 | 536.40 | 3,98E+01 | 7.92E+03 | 2.3E-05 | 5.0E-02 | | · | Chloroform | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 333.65 | 544.00 | 3.55E+01 | 3.50E+03 | N/A | 2.0E-01 | | | cis-1,2-Dichloroethylene | 7.36E-02 | 1.13E-05 | 4.07E-03 | 25 | 7,192 | 353.85 | 530.78 | 1.60E+02 | 5.50E+01 | #N/A | #N/A | | | Cyclohexane | 8.00E-02 | 9.00E-06 | 2.00E+00 | 25 | 1,309 | 409.34 | 617.20 | 3.63E+02 | 1.69E+02 | N/A | 1.0E+00 | | | Ethylbenzene | 7.50E-02 | 7.80E-06 | 7.88E-03 | 25 | 8,501 | | 631.01 | 9.31E+03 | 5.60E+01 | N/A | 4.0E-01 | | | Isopropylbanzene | 6.50E-02 | 7.83E-06 | 1,47E-02 | 25 | 1,259 | 425.40 | 560.85 | 2.68E+02 | 1.40E+01 | N/A | 3.0E+00 | | | Methyl cyclohexane | 9.86E-02 | 8.52E-06 | 4,23E-01 | 25 | 1,296 | 373.90 | | | 5,10E+04 | N/A | 3.0E+00 | | | Methyl-Tertiary-Butyl Ether | 1.02E-01 | 1.05E-05 | 5.87E-04 | 26 | 1,324 | 328.36 | 497.11 | 3.84E+01
1.17E+01 | 1.30E+04 | 4.7E-07 | 3.0E+00 | | | Methylene chloride | 1.01E-01 | 1.17E-05 | 2.19E-03 | 25 | 6,706 | 313.00 | 510,00 | 1.55E+02 | 2.00E+02 | 5.9E-06 | N/A | | | Tetrachloroethylene | 7.20E-02 | 8.20E-06 | 1,84E-02 | 25 | 8,288 | 394.40 | 620.20
591.79 | 1.82E+02 | 5.26E+02 | N/A | 4.0E-01 | | | Toluene | 8.70E-02 | 8,60E-06 | 6.63E-03 | 25 | 7,930 | 383.78 | | | | N/A | 2.0E-01 | | | trans-1,2-Dichioroethylene | 7.07E-02 | 1,19E-05 | 9,39E-03 | 25 | 1,333 | 320.85 | 516.50 | 5.25E+01 | 6.30E+03 | | 4.0E-02 | | | Trichloroethylene | 7,90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.10E+03 | 1.1E-04 | | | | Vlnyl chloride | 1.06E-01 | 1.23E-05 | 2.71E-02 | 25 | 5,250 | 259.25 | 432.00 | 1.86E+01 | 2,76E+03 | 8.8E-06 | 1.0E-01
1.0E-01 | | | Xylenes | 7.69E-02 | 8.44E-06 | 6.73E-06 | 25 | 1,264 | 417.40 | 616.21 | 2.41E+02 | 2.20E+02 | N/A | | | | Acetophenone | 6.00E-02 | 8.73E-06 | 1.02E-05 | 25 | 1,214 | 475.00 | 712.50 | 4.62E+01 | 6.13E+03 | N/A | N/A | | | Naphthalene | 5.90 E-02 | 7.50E-06 | 4.83E-04 | 25 | 10,373 | 491.14 | 748.40 | 2.00E+03 | 3.10E+01 | N/A | 3.0E-03 | | 1 | Methylnaphthalene, 2- | 4.84E-02 | 7.75E-06 | 1.01E-03 | 25 | 1,169 | 514.05 | 761.01 | 8.51E+03 | 2.46E+01 | N/A | 3.0E-03 | | | Biphenyl, 1,1'- | 4.04E-02 | 8.15E-06 | 3.03E-04 | 25 | 1,149 | 529.10 | 793,65 | 6.25E+03 | 6.94E+00 | N/A | N/A | | | Acenaphthylene | 4.43E-02 | 7.44E-06 | 2,80E-04 | 25 | 1,118 | 553.00 | 792.01 | 4.79E+03 | 3.93E+00 | N/A | 3.0E-03 | | | Acenaphthene | 4.21E-02 | 7.69E-06 | 1.55E-04 | 25 | 12,155 | 550.54 | 803,15 | 7.08E+03 | 4.24E+00 | N/A | 3.0E-03 | | | ' Fluorene | 3.63E-02 | 7.88E-06 | 9,41E-08 | 25 | 12,666 | 570.44 | 870.00 | 7.71E+03 | 1.90E+00 | N/A | 3.0E-03 | | | Phenanthrene | 3.30E-02 | 7.47E-06 | 1.30E-04 | 25 | 1,057 | 613.00 | 869.01 | 1.41E+04 | 1.28E+00 | N/A | 3.0E-03 | | | ' Anthracene | 3.24E-02 | 7.74E-06 | 6.51E-05 | 25 | 13,121 | 615.18 | 873.00 | 2.95E+04 | 4.34E-02 | N/A | 3.0E-03 | | C9-C18 | C9-C18 Aliphatics | 6.00E-02 | 1,00E-05 | 1.66E+00 | 25 | NA | NA | NA | 6.80E+05 | 1.00E+01 | N/A | 2.0E-01 | | C11-C22 | C11-C22 Aromatics | 6,00E-02 | 1.00E-05 | 7.32E-04 | 25 | NA | NA_ | NA NA | 5.00E+03 | 5.80E+03 | N/A | 5.0E-02 | | C5-C8 | C5-C8 Aliphatics | 6.00E-02 | 1.00E-05 | 1.30E+00 | 25 | NA | NA_ | NA NA | 2.27E+03 | 1.10E+04 | N/A | 2.0E-01 | | C9-C10 | C9-C10 Aromatics | 6.00E-02 | 1.00E-05 | 7.92E-03 | 25 | NA NA | NA | NA | 1.78E+03 | 5.10E+04 | N/A | 5.0E-02 | | C9-C12 | C9-C12 Aliphatics | 6.00E-02 | 1.00E-05 | 1.56E+00 | 25 | NA NA | NA | NA NA | 1.50E+05 | 7.00E+01 | N/A | 2.0E-01 | Appendix C.4. Johnson & Ethinger Model - Calculations Screen Inheliation of Volatiles from Groundweller Future Child Recreational Scenario - CT Southweet Proteins, Wells G&H Superfund Site, Operable Unit 2 Abertono Auto Perts | | Saurce-
building
##0#ration,
L _T | Vactorse
zone soil
air-filled
porceity,
0, | Vadose zone
effective
total fluid
eaturation,
Sp | soli
intrinsio
permeability,
k _i | Vadose zone
scal
reletive bir
permeability,
k _m | Vedose zone
soli
effective vapor
permeditity,
k, | Thickness of Capitlery zone, | Total
porpelly in
capitary
zone,
n _{er} | Air-filed porosity in capitary zone, θ_{ext} | Water-filled porosity in capitary some, q_{uva} | Floor-
wall
seam
perimeter,
Xoreck | Biog.
ventilation
rate,
O _{metro} | Area of
enclosed
enace
below
grade,
A _e | Orack-
to-loisi
area
ratio. | Crack
death
below
grade,
Zone | Enthalov of
vaccrization at
ave groundwater
temperature, | Henry's law
constant of
two, promotivater
temperature, | temperature. | |--|--|--|--|--|--|--|------------------------------|--|---|---|--|---|---|--------------------------------------|---|---|---|-------------------| | | (cm) | (cm²/cm²) | (cm²/cm²) | (cm²) | (cm²) | (pm²) | (cm) | (cm²/cm²) | (cm³/cm³) | (cm²/cm²) | (cm) | (cm³/s) | (cm²) | | | ۵۲۰۰۰ | H _{te}
(alm-m³/mol) | H, ¹²⁸ | | 71556 1.1.1-Trichkroethane | | | | | | | | **** | , | , | 100.01 | (4-11.0) | | (unideas) | (cm) | (cal/mel) | (alm-m-/mor) | (unitiess) | | 76131 Trichicro-1,2,2-triflowoethere, 1,1,2- | 67.6 | 0.130 | 0.653 | 1.62E-08 | 0.390 | 5.33E-09 | 10.75 | 0.43 | 0.127 | 0.303 | 3 01E+04 | 1.81E+07 | 5.87E+07 | 5.31E-05 | 15 | | | | | 79005 (1,1,2-Trichloroethane | 67.6 | 0.130 | 0 659 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0,127 | 0.303 | 3 01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 7,885
1 436 | 8,50E-03 | 3.66F-01 | | 75343 1,1-Dichloroethane | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1 81E+07 | 5.67E+07 | 5.31E-05 | 15 | | 4.55E-01 | 1.96E+01 | | 75354 1,1-Dichloroethylene | B7.6 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 9,572 | 3.88E-04 | 1 67E-02 | | 120821 1,2,4-Trichiorobenzene | 67,6
67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75_ | 0.43 | 0.127 | 0 303 | 3.01E+04 | 1 81E+07 | 5.67E+07 | 5.31E-05 | 15 | 7,450
6,392 | 2 88E-03 | 1.24E-01 | | 95501 1,2-Dichlorobenzene | | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 043 | 0.127 | 0 303 | 3,01E+04 | | 5.67E+07 | 5.31E-05 | 15 | 13,230 | 1.47E-02 | 6.34E-01 | | 541731 Dichloropenzene, 1,3- | 67.6 | 0.130 | 0.659 | 1.82E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0 303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1 521 | 4.35E-04 | 1 87E-02 | | 106467 1,4-Dichlorobenzene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | | 1.41E-06 | 6.09E-05 | | 78933 Bulanone, 2- (MEK) | 67,6 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6 33E-09 | 18 75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,503 | 4.11E-03 | 1 77E-01 | | 67641 Acetone | 67.6 | 0.130 | 0.659 | 1.62E-08 |
0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 11,243 | 8.89E-04 | 3 83E-02 | | 71432 Benzene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | | 1,486 | 4.90E-05 | 2 11E-03 | | 74839 Bromornethane | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.51E+07 | 5.67E+07 | 5 31E-05 | 15 | 7,559 | 1.97E-05 | 8 50E-04 | | 75150 Carbon Disutide | 57.6 | 0,130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5318-05 | 15 | 8,122 | 2.69E-03 | 1 16E-01 | | 108907 Chlorobenzene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6,33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5 31E-05 | 15 | 1,337 | 5 52E-03 | 2.38E-01 | | 75003 Ethyl Chloride | 67 6 | 0 130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | | 15 | 6,682 | 6 99E-03 | 3 01E-01 | | 67663 Chionafarm | 67.6 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5 67E+07 | 5.31E-05 | 15 | 9,603 | 1 54E-03 | 6.65E-02 | | 156592 cis-1,2-Dichloroethylene | 67.6 | 0.130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,201 | 7.79E-03 | 3.35E-01 | | 110827 Cyclohexane | 67,B | 0,130 | 0,659 | 1.62E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 7,554 | 1.86E-03 | 6.02E-02 | | 100414 Ethylbenzene | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.87E+07 | 5.31E-05 | 15 | 7,734 | 2.04E-03 | 8,77E-02 | | | 67.6 | 0.130 | D.659 | 1.62E-08 | 0,390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | | 5.31E-05 | 15 | 1,486 | 1.75E+00 | 7 54E+01 | | 98828 (sopropy/benzene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | | 5.67E+07 | 5.31E-05 | 15 | 10,155 | 3.18E-03 | 1.37E-01 | | 108872 Methyl cyclohecane | 67.6 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 5.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 181E+07 | 5,67E+07 | 5.31E-05 | 15 | 1,540 | 1.26E-02 | 5.51E-01 | | 1634044 Melhyl-Tertlery-Butyl Ether | 67.6 | 0,130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5,67E+07 | 5.31E-05 | 15 | 1,505 | 3.70E-01 | 1.59E+01 | | 75092 Methylene chloride | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1 B1E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,447 | 5 16E-04 | 2.22E-02 | | 127184 Tetrachloroethylene | 67.6 | 0.130 | 0.559 | 1,62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | | 1 81E+07 | 5.67E+07 | 531E-05 | 15 | 7,034 | 1,17E-03 | 5.03E-02 | | 108883 Toluene | 67,6 | 0.130 | 0.559 | 1.62E-08 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.B1E+Q7 | 5.67E+07 | 5 31E-05 | 15 | 9,553 | 7.83E-03 | 3.37E-01 | | 156605 trans-1_2-Dichlorostinylene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-06 | 15 | 9,154 | 2.92E-03 | 1.26E-01 | | 790.16 Trichkrosthylene | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0 390 | 6.33E-09 | 18.75 | D.43 | 0.127 | | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,417 | 5.27E-03 | 3.56E-01 | | 75014 Vinyl chicrida | 67.6 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.76 | 0.43 | 0.127 | 0.303 | 3 01E+04 | 1.B1E+07 | 5.67E+07 | 5.31E-05 | 15 | 8,657 | 4.79E-03 | 2.06E-01 | | 1330207 Xylense | 67.6 | 0.130 | 0.659 | 1.62E-05 | 0.390 | 6 33E-09 | 18.75 | 0,43 | | | 3.01E+04 | 1.B1E+07 | 5.67E+07 | 5.31E-05 | 15 | 6,000 | 1.73E-02 | 7.46E-01 | | 9588Z Acetophenone | 67.6 | 0 130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1,81E+07 | 5.67E+07 | 5.31E-05 | 15 | 1,542 | 5 86E-06 | 2.52E-04 | | 91203 Naphthalone | 67.6 | 0 130 | 0.659 | 1 62E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | | 0.303 | 3.01E+04 | 1,51E+07 | | 5.31E-05 | 15 | 1,518 | 8.91E-06 | 3.83E-04 | | 91576 Mediyinephthalama, 2- | 67.6 | 0.130 | 0.859 | 1.62E-08 | 0.390 | 8.33E-09 | 18.75 | 0.43 | 0 127 | 0,303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 12,913 | 1.52E-04 | 6.55E-03 | | 92524 Siphenyl, 1,1'- | 67.8 | 0.130 | 0 659 | 1.62E-08 | 0.390 | 6.33E-09 | 16,75 | | 0 127 | 0.303 | 3.01E+04 | 1.81E+07 | | 5.31E-05 | 15 | 1,506 | 5.86E-04 | 3.81E-02 | | 208968 Acenaphitylane | 67.8 | 0.130 | 0.659 | 1.62E-06 | 0.390 | 6.33E-09 | 16.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.51E+07 | | _6.31E-05 | 15 | 1,472 | 2.66E-04 | 1 14E-02 | | 83329 Acensphthene | 87.5 | 9.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | | 0.127 | D.303 | 3.01E+04 | 1.81E +07 | | 5.316-05 | 15 | 1,513 | 2 45E-04 | 1.05E-02 | | 86737 Fluorene | 67.6 | 0.130 | 0.659 | 1.52E-08 | 0.390 | 6.33E-09 | 18.75 | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | | 5 31E-05 | 15 | 16,123 | 3.67E-05 | 1.58E-03 | | 85018 Phonantiwene | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | | | 0.43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.87E+07 | 5.31E-05 | 15 | 16,235 | 2.20E-08 | 9.48E-07 | | 120127 Anthresens | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09
6.33E-09 | 18,75 | 0.43 | 0.127 | 0,303 | 3.01E+04 | 1.81E+07 | 5.87E+07 | 5.31E-05 | 15 | 1,479 | 1.14E-04 | 4 90E-03 | | C9-C16 C9-C18 Aliphatics | 67,6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18.75
18.75 | 0.43 | 0.127 | 6.303 | 301E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | 16,353 | 1.266-05 | 5 43E-04 | | C11-C22 C11-C22 Aromatica | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | | 0.43 | 9.127 | 0.303 | 3 01E+04 | 1.81E+07 | 5.B7E+07 | 5.31E-05 | 15 | NA NA | 8.28E-01 | 3.56E+01 | | C5-C8 C5-C8 Aliphetics | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | | 18.75 | 0.43 | 0,127 | 0.303 | 3 01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | NA NA | 3.60E-04 | 1 55E-02 | | C9-C10 C9-C10 Aromatics | 67.6 | 0.130 | 0.659 | 1.62E-08 | 0.390 | 6.33E-09 | 18,75 | 0 43 | 0.127 | 0.303 | 3.01E+04 | 1.81E+07 | 5.67E+07 | 6.31E-05 | 15 | NA NA | 5 48E-01 | 2.79E+01 | | C9-C12 C9-C12 Alphalics | 67.6 | 0.130 | 0.659 | 1.62E-08 | | 6 335-09 | 15,75 | 0 43 | 0.127 | | 3.01E+04 | 1.81E+07 | 5.67E+07 | 5.31E-05 | 15 | NA | 3 96E-03 | 1.70E-01 | | | 47.4 | 3 | V.003 | 1.021:-00 | 0.390 | 6 33E-09 | 18.75 | 0 43 | 0.127 | 0.303 | 3.01E+04 | 161E+07 | 5.67E+07 | 5.31E-05 | 15 | NA NA | 7 50E-01 | 3.36E+01 | Appendix C.4. Johnson & Ellinger Model - Celculations Screen Inheliation of Volatilae from Groundwater Future Child Recreational Scenario - CT Southweel Proefice, Welle G&H Superfund Stra, Open Aberlone Auto Perla | | Vapor viscosity el swe, soli semperature, interesture, (g/on-e) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} v
(cm²/s) | Copiliary
zone
effective
diffusion
confficient,
D ^{ef} er
(om ² (s) | Total overall effective diffusion coefficient, Deff, (cm ² /s) | Diffusion
path
lensth,
L _s | Convection
path
length,
L, | Source
Vector
conc.,
C
(µg/m²) | Creck
redius,
remai | Average vepor flow rate into bldp., C(cm ³ /e) | Creck effective cliffusion coefficient, prost (ont ² /s) | Area of crack, Area (cm ²) | Exponent of
aquivalent
toundation
Peolet
number,
exp(Pe ^b) | Intinite source Indoor attenuation coefficient, | infinite
source
bidg.
cono.,
C _{mann}
(ud/m ²) | Und
risk
factor,
URF
(µg/m³)*1 | Reference
cond .
RfC | |---|---|--|---|---|--|-------------------------------------|--|---------------------------|---|---|--|---|---|--|--|----------------------------| | | 1 | 14 | (07.1.12) | 1374) | lon | (Sit) | / | tem | (SAM 78) | (OIN /B) | yem j | (unitiess) | (unitiess) | (hthus,) | (http:// | (mg/m³) | | 71595 1,1,1-Trichkroethene | 1.75E-04 | 4,75E-04 | 4.45E-04 | 4.66E-04 | 67.6 | 15 | N/A | 0.10 | 1 4.79E+01 | 4.75E-04 | 3.01E+03 | 1.21E+218 | 2 36F-06 | NA | N/A | 2.2E+00 | | 75131 Trichtoro-1,2,2-triflouroethane, 1,1,2- | 1,75E-94 | 1.75E+04 | 1,63E-04 | 1.71E-D4 | 87.6 | 15 | NVA | 0.10 | 4.79E+01 | 1.75E-04 | 3.01E+03 | #NLIM | 90E-06 | NA | N/A | 3.0E+01 | | 79005 1,1,2-Trichloroethane | 1.75E-04 | 5.24E-04 | 4,95E-04 | 5.16E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 5.24E-G4 | 3.01E+03 | | 2.38E-06 | NA | 1.8E-05 | 2.2E+00 | | 75343 1,1-Dichloroethane | 1.75E-04 | 4.58E-04 | 4.29E-04 | 4.50E-04 | 67.6 | 15 | ΝA | D. 1D | 4.79E+01 | 4.56E-04 | 3.01E+03 | | 2.35E-06 | N/A | N/A | 5.0E-01 | | 75354 1,1-Dichlarcethylene | 1.75E-04 | 5.47E-04 | 5.12E-04 | 5.37E-04 | 67.6 | 15 | 6.71E+01 | 0.1D | 4.79E+01 | 5.47E-04 | 3.01E+03 | | 2,39E-06 | 1.60E-04 | N/A | 2.0E-01 | | 120821 1,2,4-Trichlorobenzene | 1,75E-04 | 2,25E-04 | 2.14E-04 | 2.22E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 2.25E-04 | 3.01E+03 | ANUM | 2.10E-06 | N/A | NA | 2.0E-01 | | 95501 1,2-Dichlorobenzene | 1.75E-04 | 1.56E-02 | 1.60E-02 | 1.57E-02 | 67.6 | 15 | N/A | 0.10
| 4.79E+01 | 1.56E-02 | 3.01E+03 | 4.41E+06 | 2.54E-06 | NA. | N/A | N/A | | 541731 Dichlorobenzene, 1,3- | 1,75E-04 | 2.56E-04 | 2,40E-04 | 2.51E-04 | 67,6 | 15 | N/A | 0.10 | 4.79E+01 | 2.56E-04 | 3.01E+03 | WHAT | 2.16E-08 | NA | N/A | N/A | | 106467 1,4-Dichlorobenzine | 1,75E-04 | 4.38E-04 | 4.12E-04 | 4,31E-04 | 67.6 | 15 | 1.79E+01 | 0.10 | 4.79E+01 | 4.38E-04 | 3.01E+03 | 2.05Ê+238 | 2.34E-06 | 4.19E-05 | N/A | 8.0E-01 | | 78933 Butenone, 2- (MEX) | 1,75E-04 | 8.45E-04 | 9.27E-04 | 9,40E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 9.45E-04 | 3.01E+03 | | 2.49E-06 | N/A | N/A | N/A | | 67641 Acetone | 1.75E-04 | 2.07E-03 | 2.085-03 | 2.07E-03 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 2.07E-03 | 3.01E+03 | 1.22E+50 | 2.57E-06 | N/A | N/A | N/A | | 71432 Benzene | 1.75E-04 | 5.42E-04 | 5.07E-04 | 5.32E-04 | 67.6 | 15 | 3.02E+01 | 0.10 | 4.79E+01 | 5.42E-04 | 3.01E+03 | | 2.39E-06 | 7,22E-05 | 7.8E-06 | 3.0E-02 | | 74839 Bromomethane | 1.75E-04 | 4.46E-04 | 4.18E-04 | 4.38E-04 | 67.6 | 15 | N/A | 0,10 | 4.79E+01 | 4.46E-04 | 3,01E+03 | 1.58E+232 | 2.34E-08 | N/A | N/A | 5.0E-03 | | 75150 Carbon Disutide | 1.75E-04 | 6.34E-04 | 5.94E-04 | 6.23E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 6.34E-04 | 3.01E+03 | 1.95E+183 | 2.42E-06 | N/A | N/A | 7,0E-01 | | 108907 Chlorobenzene | 1.75E-04 | 4.55E-04 | 4.27E-04 | 4,47E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 4.55E-04 | | 3.77E+227 | 2.35E-08 | NA | N/A | 6.0E-02 | | 75003 Ethyl Chloride | 1.75E-04 | 7.66E-04 | 7.16E-04 | 7.51E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 7.66E-04 | 3,01E+03 | | 2.46E-06 | N/A | N/A | 1.0E+01 | | 67663 Chloroform | 1.75E-04 | 6.43E-04 | 6.02E-04 | 6,31E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 5.43E-04 | | 1.77E+181 | 2.43E-05 | N/A | 2.3E-05 | 5.0E-02 | | 156592 cle-1,2-Dichlorcethylene | 1.75E-04 | 4.58E-04 | 4,30E-04 | 4.50E-04 | 67.6 | | 5.95E+02 | 0.10 | 4.79E+01 | 4.59E-04 | | 7,48E+225 | 2.35E-06 | 1.40E-03 | N/A | 2.0E-01 | | 110827 Cyclohecene | 1.75E-04 | 4.85E-04 | 4,53E-04 | 4.76E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 4.85E-04 | | 4.09E+213 | 2.36E-06 | N/A | MAVA | #N/A | | 100414 Ethylbenzene | 1.75E-04 | 4,80E-04 | 4,31E-04 | 4.52E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 4.60E-04 | 3,01E+03 | 1.47E+225 | 2.35E-06 | N/A | N/A | 1.0E+00 | | 95526 Isopropybenzene | 1.75E-04 | 3.95E-04 | 3.70E-04 | 3.88E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.95E-04 | 3.01E+03 | 1.24E+262 | 2.31E-06 | N/A | N/A | 4.0E-01 | | 108872 Methyl cyclohexane | 1.75E-04 | 5.98E-04 | 5.59E-04 | 5.86E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 5.96E-04 | 3.01E+03 | 2.33E+173 | 2.41E-06 | N/A | N/A | 3.0E+00 | | 1534044 Methyl-Tertiery-Butyl Ether | 1.75E-04 | 6.67E-04 | 6.26E-04 | 6.56E-04 | 67.6 | 15 | 9.35E+01 | 0.10 | 4.79E+01 | 6.57E-04 | 3.01E+03 | | 2.43E-06 | 2 28E-04 | N/A | 3.0E+00 | | 75092 Meltrylene chloride | 1.75E-04 | 6.35E-04 | 5.96E-04 | 6.24E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 6.35E-04 | 3.01E+03 | 1.48E+183 | 2.42E-06 | N/A | 4.7E-07 | 3.0E+00 | | 127184 Tetrachiorcethylene | 1.75E-04 | 4.39E-04 | 4,11E-04 | 4.31E-04 | 67.6 | 15 | 1,41E+02 | 0.10 | 4.79E+01 | 4.39E-04 | 3.01E+03 | 1.40E+236 | 2.34E-06 | 3,29E-04 | 5.9E-06 | N/A | | 103383 Tokume | 1.75E-04 | 5.34E-04 | 5.00E-04 | 5.24E-04 | 57.5 | 15 | N/A | 0.10 | 4.79E+01 | 5.34E-04 | 3.01E+03 | 1.D8E+194 | 2.39E-06 | N/A | N/A | 4.0E-01 | | 156605 trans-1,2-Dichlorosthylene | 1.75E-04 | 4.32E-04 | 4.04E-04 | 4.24E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 4.32E-04 | 3 01F+09 | 9 26E+239 | 2.33E-06 | N/A | N/A | 2,05-01 | | 79016 Trichtorcethylene | 1.75E-04 | 4.83E-04 | 4.5ZE-04 | 4.74E-04 | 67.6 | 15 | 1.55E+03 | 0.10 | 4.79E+01 | 4.83F-04 | | 2.88E+214 | 2.36E-06 | 3.66E-03 | 1.1E-04 | 4.0E-02 | | 75014 Vinyl chicatele | 1.76€-04 | 6.44E-04 | 6.02E-04 | 6.32E-04 | 67.6 | 15 | 1.52E+02 | 0.10 | 4.79E+01 | 6.44E-04 | | 7.47E+180 | 2.43E-06 | 3,93E-04 | 8.8E-06 | 1.0E-01 | | 1330207 Xylenes | 1.75E-04 | 3.75E-03 | 3,81E-03 | 3.77E-03 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.75€-03 | 3.01E-03 | 4.33E+27 | 2.61E-05 | N/A | N/A | 1.0E-01 | | 98862 Acelophenone | 1.75E-04 | 2.60E-03 | 2.64E-09 | 261E-03 | 67.B | 15 | N/A | 0.10 | 4.79E+01 | 2.60E-03 | 3,01E+03 | 7.28E+36 | 2.59E-06 | N/A | NA. | N/A | | 91203 Naphthalene | 1.75E-04 | 4.70E-04 | 4.50E-04 | 4.64E-04 | 67.6 | 15 | 8 64E+00 | 0.10 | 4.79E+01 | 4.7DE-D4 | 3.01E+03 | 3.02E+220 | 2.36E-06 | 2.04E-05 | N/A | 3.0E-03 | | 91576 Methylnaphthalene, 2- | 1.75E-04 | 3.13E-04 | 2.95E-04 | 3.08E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.13E-04 | 3.01E+03 | INUM | 2.23E-06 | N/A | N/A | 3.0E-03 | | 92524 Biphenyl, 1,11- | 1.75E-04 | 3.15E-04 | 3.01E-04 | 3.11E-04 | 67.5 | 15 | NA | 0.10 | 4.79E+01 | 3.15E-04 | 3.01E+09 | #NUM | 2.24E-06 | N/A | N/A | N/A | | 208968 Acenaphthylene | 1,75E-04 | 3,38E-04 | 3.22E-04 | 3 33E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.38E-04 | | 7.70E+306 | 2.28E-06 | N/A | N/A | 3.0E-03 | | 63329 Apenephthene | 1.75E-04 | 7.33E-04 | 7.31E-04 | 7.33E-04 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 7,33E-04 | 3.01E+03 | 1.63E+141 | 2.45E-06 | N/A | N/A | 3.0E-03 | | 66737 Fluorena | 1.75E-04 | B.16E-01 | 8.39E-01 | 8.22E-01 | 57.6 | 15 | N/A | 0.10 | 4.79E+01 | 8.16E-01 | 3.01E+03 | 1.34E+00 | 1.04E-05 | N/A | N/A | 3.0E-03 | | 650 SS Phananthrana | 1.75E-04 | 3,50E-04 | 3,41E-04 | 3.47E-04 | 57.5 | 15 | 1.03E+01 | 0.10 | 4.79E+01 | 3.50E-04 | 3.01E+03 | 2.42E+295 | 2.27E-06 | 2.34E-05 | NA. | 3.0E-03 | | 120127 Antivacene | 1,75E-04 | 1.60E-03 | 1.62E-03 | 1.50E-03 | 57.6 | 15 | N/A | 0.10 | 4.79E+01 | 1.60E-03 | 3.01E+03 | 8.67E+64 | 2.55E-06 | N/A | N/A | 3.0E-03 | | C9-C18 C9-C18 Aliphatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.57E-04 | 67.6 | 15 | NA | 0.10 | 4.79E+01 | 3.64E-04 | 3.01E+09 | | 2.28E-06 | N/A | N/A | 2.0E-01 | | C11-C22 C11-C22 Aromatics | 1.75E-04 | 4,27E-04 | 4.05E-04 | 4.21E-04 | 67.6 | 15 | NA | 0.10 | 4.79E+01 | 4.27E-04 | | 4.50E+242 | 2.33E-06 | N/A | N/A | 5.0E-02 | | C5-C8 C5-C8 Aliphatics | 1.75E-04 | 3.64E-04 | 3,40E-04 | 3.57E-04 | 57.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.64E-04 | | 7.91E+284 | 2.285-06 | N/A | N/A | 2.0E-01 | | C9-C10 C9-C10 Aromatios | 1.75E-04 | 3,66E-04 | 3.46E-04 | 3.63E-04 | 57.5 | 15 | N/A | 0.10 | 4.79E+01 | 3.69E-04 | 3.01E+03 | 3.04E+280 | 2.29E-06 | N/A | NA NA | 5.0E-02 | | C9-C12 C9-C12 Aliphatics | 1.75E-04 | 3.64E-04 | 3.40E-04 | 3.57E-D4 | 67.6 | 15 | N/A | 0.10 | 4.79E+01 | 3.64E-04 | | 7.99E+284 | 2.25E-06 | NA. | N/A | 2.0E-01 | Appendix C.4 Johnson & Ettinger Model - Results Inhalation of Volatiles from Groundwater Future Child Recreational Scenario - CT Southwest Prperties, Wells G&H Superfund Site, Operable Unit 2 Aberjona Auto Parts # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: INCREMENTAL RISK CALCULATIONS: | | | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L-) | Risk-based indoor exposure groundwater conc., (ug/L) | Pure
component
water
solubility,
S
(µg/L) | Final indoor exposure groundwater conc., (µg/L) | ris
v
intn
ind-
card | emental k from apor usion to cor air, cinogen uitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |------------------|---|---|---|--|--|---|---------------------------------------|--|--| | | | | | | | | _ | | | | | t,1,1-Trichtoroethane | NA NA | NA NA | NA. | 1.33E+06 | NA
NA | i | NA | NA NA | | | Trichloro-1,2,2-triflouroethane, 1,1,2- | NA NA | NA | NA. | 1.70E+05
4.42E+06 | NA NA | | NA | NA NA | | | 1,1,2-Trichioroethane | NA NA | NA NA | NA. | | | · • | NA | NA | | | 1,1-Dichloroethane | NA NA | NA NA | NA | 5.06E+06
2.25E+06 | NA
NA | | NA | NA S OF OR | | | 1,1-Dichloroethylene | NA | NA | NA NA | | NA NA | | NA | 6.0E-09 | | | 1,2,4-Trichlorobenzene | NA NA | NA NA | NA | 3.00E+05 | | · · · · · · · · · · · · · · · · · · · | NA | NA
 | | 95501 | 1,2-Dichlorobenzene | NA NA | NA | NA | 2.77E+07 | NA NA |) | NA | NA | | 541731 | Dichlorobenzene, 1,3- | NA NA | NA | NA NA | 6.88E+04 | NA NA | | NA | NA NA | | 106467 | 1,4-Dichlorobenzene | NA | NA NA | NA | 7.38E+04 | NA NA | | NA | 3,9E-10 | | 78933 | Butanone, 2- (MEK) | NA NA | NA | NA | 2.23E+08 | NA NA | <u> </u> | NA | NA NA | | 67641 | Acetone | NA NA | NA | NA | 1,00E+09 | NA NA | | NA | NA NA | | 71432 | Benzene | NA | NA | NA . | 1.75E+06 | NA NA | · · · · · · · · · · · · · · · · · · · | 2E-13 | 1.8E-08 | | 74839 | Bromomethane | NA NA | NA | NA | 1.52E+07 | NA NA | | NA | NA NA | | 75150 | Carbon Disulfide | NA | NA | NA. | 2.67E+06 | NA NA | | NA | NA. | | 108907 | Chlorobenzene | NA NA | NA | NA | 4.72E+05 | NA | L | NA . | NA. | | 75003 | Ethyl Chloride | NA | NA | NA | 5.32E+06 | NA | | NA | NA | | 67663 | Chloroform | NA | NA | NA | 7.92E+06 | NA NA | L | NA | NA. | | 156592 | cis-1,2-Dichloroethylene | NA | NA . | NA | 3.50E+06 | NA NA | | NA | 5.2E-08 | | 110827 | Cyclohexane | NA | NA | NA | 5.50E+04 | NA | | NA | NA NA | | 100414 | Ethylbenzene | NA | NA | NA | 1.69E+05 | NA | | NA | NA | | 98828 | Isopropylbenzene | NA | NA | NA | 5.60E+04 | NA | | NA | NA | | 108872 | Methyl cyclohexane | NA | NA | NA. | 1.40E+04 | NA . | | NA | NA | | 1634044 | Methyl-Tertiary-Butyl Ether | NA NA | NA. | NA | 5.10E+07 | NA | | NA | 5.6E-10 | | | Methylene chloride | NA. | NA NA | NA | 1.30E+07 | NA | | NA | NA. | | | Tetrachioroethylene | NA | NA | NA | 2.00E+05 | NA NA | 4. | 1E-13 | NA NA | | | Toluene | NA | NA | NA | 5.26E+05 | NA. | | NA NA | NA NA | | | trans-1,2-Dichloroethylene | NA | NA | NA
| 6.30E+06 | NA NA | | NA | NA NA | | | Trichloroethylene | NA | NA. | NA | 1.10E+06 | NA | 8. | 5E-11 | 6.8E-07 | | | Vinyl chloride | NA | NA | NA. | 2.76E+06 | NA NA | 7.3 | 3E-13 | 2.9E-08 | | | Xylenes | NA | NA NA | NA | 2.20E+05 | NA | | NA | NA NA | | | Acetophenone | NA. | NA. | NA | 6.13E+06 | NA | | NA . | NA NA | | | Naphthalene | NA | NA | NA | 3.10E+04 | NA NA | | NA | 5.0E-08 | | | Methylnaphthalene, 2- | NA. | NA. | NA | 2.46E+04 | NA | | NA | NA. | | | Biphenyl, 1,1'- | NA NA | NA NA | NA. | 6.94E+03 | NA NA | | NA | NA. | | | Acenaphthylene | NA NA | NA NA | NA | 3.93E+03 | NA NA | | NA . | NA NA | | | Acenaphthene | NA. | NA NA | NA. | 4.24E+03 | NA. | | NA. | NA. | | | Fluorene | NA NA | NA NA | NA NA | 1.90E+03 | NA. | | NA . | NA NA | | | Phenanthrene | NA NA | NA. | NA NA | 1.28E+03 | NA. | | NA . | 5.8E-08 | | | Anthracene | NA NA | NA NA | NA NA | 4.34E+01 | NA. | | NA | NA NA | | C9-C18 | C9-C18 Aliphatics | NA
NA | NA
NA | NA NA | 1.00E+04 | NA NA | | NA | NA NA | | C11-C22 | C11-C22 Aromatics | NA NA | NA NA | NA NA | 5.80E+06 | NA NA | | NA NA | NA NA | | C11-022
C5-C8 | C5-C8 Aliphatics | NA NA | NA
NA | NA NA | 1.10E+07 | NA NA | | NA | NA NA | | C9-C10 | C9-C10 Aromatics | NA NA | NA
NA | NA NA | 5.10E+07 | NA NA | | NA
NA | NA NA | | 03-C10 | C9-C10 Arbhiatics
C9-C12 Allphatics | NA
NA | NA
NA | NA
NA | 7.00E+04 | NA NA | | NA NA | NA NA | 95% UCL Cancer 95% UCL Risk HI TOTAL: 9E-11 9E-07 = Cancer risk > 1E-05 or HQ/HI>1E+00 | | <u> </u> | | | | | | | | 1 | | | | | | | | | 1 | | | |---|---|--------------------------|-----------------------------|--------------------------------|-----------------|-----------------------------|--------------------------------|------------------|-------------------------|---------------------------|-------------------------|---------------------------------------|-------------------------|--|--------------------------|---------------------------|-----------------------|---------------------|------------------|--------------| | Inhalstion of Volation
Future Adult Resident | | nik 2 | | | | | | | | | | | | | | - | | | . - | | | CALCULATE RISK B | ASED GROUNDWATER CONCENTR | UATION (enter "X" in "Y! | E8" bar) | | | | | | | | | | | | | | | | | | | 1 | YES | İ | OR | CALCULATE INCREI | MENTAL RISKS FROM ACTUAL GRO
IX and Initial groundwater conc. below) | UNDWATER CONCE | NTRATION | | - | | | | | | | | | | | | | | | | | | YES X | | ENTER | ENTER | ENTER | ENTER | | | | | | | | | | | | | | | | ENTER | | ENTER | Depth
below grade | | Linex | | ENTER | | ENTER | | | | | | | | | | | | | Chemical | Erner Initial group | 96% UCL | to bottom | Depth | | Average
eoil/ | Various zzna
8CS | | er-delined
Some zone | ENTER
Vacione zone | ENTER
Vadose zone | ENTER
Vedose zone | ENTER
Target | ENTER Target hazard | ENTER
Averaging | ENTER
Averaging | ENTER | ENTER | ENLES | EVLES | | CAS No. | | groundwater
conc., | of enclosed
apace floor, | below prede
10 weler lable, | SCS
eal type | groundwater
temperature, | soli type
(weed to estimate | | oil vacor
moablity, | noli drv
bulk demsity, | ecti total
portsety. | ncii water-filled
parosity, | risk for
carcinogens | quotient for
noncarcinogene, | time for
cercinogene. | lime for noncerolinguese. | Exposure
duration, | Exposure frequency. | Exposure
time | Coversion | | (numbers only,
no dashee) | Chamical | کیر
(بیو/ل) | اب
(10 200) | LWT | directly above | T _a | soil yapor | | k, | A | h | 0. | TR | THO | AT _C | ATec | €D | EF | ET | CF | | | | 4-4-7 | (15 or 200 pm) | (cm) | wreter teble | (°C) | permeability) | Note | (cus,) | (g/cm³) | (unitiess) | (cam ³ /cam ³) | (unitiese) | (Unitiess) | (Att) | (7(0) | (Yra) | (daye/yr) | (hre/day) | (hrulyr) | | 71556
76131 | 1,1,1-Trichloroethane Trichloro-1,2,2-tiflouroethane, 1,1,2- | | 52.12
52.12 | 82.6
82.6 | LS | 10 | LS | | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 24 | 24 | 350 | 16 | 8760 | | 79005
75343 | 1.1.2-Tricherostrupe | | 52,12 | 82.6 | | 10 | LS
LS | | | 1,5
1,6 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 1 | 70 | 24
24 | 24 | 350
350 | 15 | 8760
8760 | | 76364 | 1,1-Dichloroethane
1,1-Dichloroethane | 1.94E-01 | 52.12
52.12 | 82.6 | LS
LS | 10 | LS
LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | | 24 | 24 | 350 | 16 | 8766 | | 120821 | 1.2.4-Trichlorobenzene | | 52 12 | 82.6 | LS | 10 | LS | \ | | 1,5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 1 | 70 | 24 | .24 | 350
350 | 16 | 8760
8760 | | 95501
541731 | 12-Dichiorobenzene Dichiorobenzene, 1,3- | | 52.12 | 62.6 | | 10 | LS | 1 | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 ' | 24 | 24 | 350 | 16 | 8760 | | 106467 | 1.4-Dichiorobenzene | 4.84E-01 | \$2.12
52.12 | 82.6
82.6 | LS
LS | 10 | <u>L\$</u> | | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 | 70
70 | 24 | 24 | 350
350 | 16 | 8760
8760 | | 78933
57641 | Birtanone, 2- (MES) | | 52.12 | 32.6 | LS | 10 | L3 | <u> </u> | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 24 | 24 | 350 | 16 | 8760 | | 71432 | Acetone
Benzene | 1.00E-01 | 52.12
52.12 | 82.6 | LS
LS | 10 | LS
LS | | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | 1 | 70
70 | 24 | 24
24 | 350 | 16 | 8760
8760 | | 74839
76160 | Bromomethane | | 52.12 | 82.6 | LS | 10 | LS | 1 | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | 24 | 24 | 350
350 | 15 | 8760 | | 108607 | Carbon Disulfide
Chlorobenzene | | 52.12
52.12 | 82.6
82.6 | LS
US | 10 | LS
LS | | | 1,5 | 0.43 | 0.3 | 1.0E-06
1.0E-06 | | 70 | 24
24 | 24 | 350 | 16 | 8760
8760 | | 75003
67583 | Ethyl Chloride | | 62.12 | 82.6 | LS | 10 | LS | <u> </u> | | 1.5 | 0.43 | 0.3 | 1.0E-06 | | 70 | 24 | 24
24 | 350
350 | 16 | 8760 | | 158592 | Chloroform
cls-1.2-Dichlorgethulene | 8.008+00 | 52.12
52.12 | 82.6 | LS
LS | 10 | LS
LS | | | 1.5 | 0.43 | 0.3 | 1.0E-08 | 1 | 70 | 24 | 24 | 350 | 16 | 6760 | | 110827 | Cyclohexane | | 52.12 | 82.6 | ÜŚ | | Ļŝ | -i | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-05 | 1 | 70
70 | 24 | 24
24 | 350
350 | 16 | 8760
8760 | | 100414 | Ethilhenzene
leoprorybenzene | | 52,12 | 82.6
82.6 | LS | 10
10 | L5 | | | 1.5 | 0.43 | 6.3 | 1.0E-Q6 | 1 | 70 | 24 | 24 | 350 | 18 | 8760 | | 108872 | Methyl cyclohypane | | 52.12
62.12 | 62.6 | LS | 10 | 23 | | | 1,5 | 0.43 | 0.3 | 1.0E-08
1.0E-08 | | 7D
70 | 24 | 24 | 350 | 16 | 8760
8760 | | 1634044
76092 | Mothyl-Tertiany-Butyl Effect Mothylene chloride | | 52.12
52.12 | 82.6
82.6 | LS | 10 | LS | _1 | | 1.5 | 0.43 | 0.3 | 1.0€-05 | 1 | 70 | 24 | 24 | 350 | 16 | 8760 | | 127184 | Tetrachionoshyjene | 4.18E-01 | 52.12 | 82.6 | <u>LS</u> | 10 | LS
US | | | 1.5 | 0.43 | 0.3 | 1.0€-06
1.0€-06 | | 70
70 | 24 | 24 | 350
350 | 15 | 8760
8760 | | 108883
156605 | Tolume | | 52.12 | 32.5 | ĻĘ | 10 | L3 | | | 1,5 | 0,43 | 0.3 | 1,0E-06 | 1 | 70 | 24 | 24 | 350 | 18 | 8760 | | 79016 | t ana-1.2-Dichlorostrylane Trichlorostrylane | 2.50E+01 | 52.12
52.12 | 82.6 | LS
L8 | 10 | 18 | | | 1.5 | 0.43
0.43 | 0.3 | 1,0E-06 | 1 | 70 | 24
24 | 24
24 | 350
350 | 16 | 8760
8760 | | 75014
1330207 | Vinyl chloride | 2.40E-01 | 57.12 | 82.6 | Ĺ8 | 10 | 15 | . 1 | | 1.5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 24 | 24 | 360 | 15 | 8760 | | 98862 | X/fores
Acetophenone | | 57,12
52,12 | 82.6 | LS | 10 | - LS | - 1 | | 1.5
1.5 | 0.43 | 0.3 | 1.0E-06 | | 70
70 | 24
24 | 24
24 | 350
350 | 16 | 8760
8760 | | 91203
91676 | Naphthalana | 2.70E+00 | 52,12 | 82.6 | ĻS | 10 | L8 | | | 1.5 | 0,43 | 0.3 | 1.0E-06 | | 70 | 24 | 24 | 350 | 16 | 8780 | | 92524 | Medinicush Gusteres, 2-
Biotestral, 1,5'- | | 52.12
52.12 | 62.6
82.6 | <u> </u> | 10 | 18 | 1 | | 1.5 | 0,43
0.43 | 0.3 | 1.0E-05 | 1 | 70
70 | 24 | 24 | 350 | 16 | 8760
8760 | | 208968
83329 | Acenephyhiene | ···· | 52,12 | 82.6 | 1.3 | 10 | LS | <u> </u> | | 1,5 | 0.43 | 6.3 | 1,0€-06
1,0€-06 | | 70 | 24
24 | 24 | 350 | 16 | 8760 | | 86737 | Acenaphthene
Flyarere | | 52.12
62.12 | 82.6
82.6 | LS | 10 | LS
LS | _ | | 1,5 | 0.43
0.43 | 0.3 | 1.0E-06 | 1 1 | 70 | 24 | 24 | 350 | 16
18 | 8760 | | 85018 | Premaritime | Z 10E+01 | 52.12 | 62.6 | L8 | 10 | LS | . i - | | 1.5 | 0.43 | 0.3 | 1.0E-06
1.0E-08 | 1 1 | 70
70 | 24 | 24 | 350
360 | -16- | 8760
8760 | | 120127
C9-C18 | Antivacens
C9-C18 Allehatics | | 52.12
52.12 | 82.6 | L8 | 10 | - 5 | 1 | | 1.5 | 0.43
0.43 | 0.3 | 1,0E-06 | 1 | 70 | 24 | 24 | 350 | 15 | 8760 | | C11-C22 | C11-C22 Aromatics | | 62.12 | 52,6 | LS | 10 | LS
LS | -} | | 1,5 | 0.43 | 0.3 | 1.0E-06 | 1 | 70 | 24
24 | 24 | 350 | 16 | 8760
8760 | | C6-C8
C9-C10 | C6-C8 Alphetics | | 52.12
50.10 | 82.5 | - 13 | 10 | L8 | | | 1.6 | 0.43 | 0.3 | 1.0E-08 | i | 70 | 24 | 24 | 350 | 16 | 8750 | Note: 1) Default and parameters from table 7 of User's Guide for Evaluating Subsurface Vapor Introduct nine Building (U.S. EPA June 19, 2003) were used for soil water filled paramity (b.), and organic carbon fraction (f_{inc}), and total porceity (n), and soil dry bulk density (p.).